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ABSTRACT

A recent trend towards running more demanding web applications,
such as video games or client-side LLMs, in the browser has led
to the adoption of the WebGPU standard that provides a cross-
platform API exposing the GPU to websites. This opens up a new
attack surface: Untrusted web content is passed through to the GPU
stack, which traditionally has been optimized for performance in-
stead of security. Worsening the problem, most of WebGPU cannot
be run in the tightly sandboxed process that manages other web
content, which eases the attacker’s path to compromising the client
machine. Contrasting its importance, WebGPU shader processing
has received surprisingly little attention from the automated test-
ing community. Part of the reason is that shader translators expect
highly structured and statically typed input, which renders typical
fuzzing mutations ineffective. Complicating testing further, shader
translation consists of a complex multi-step compilation pipeline,
each stage presenting unique requirements and challenges.

In this paper, we propose DARTHSHADER, the first language
fuzzer that combines mutators based on an intermediate represen-
tation with those using a more traditional abstract syntax tree. The
key idea is that the individual stages of the shader compilation
pipeline are susceptible to different classes of faults, requiring en-
tirely different mutation strategies for thorough testing. By fuzzing
the full pipeline, we ensure that we maintain a realistic attacker
model. In an empirical evaluation, we show that our method out-
performs the state-of-the-art fuzzers regarding code coverage. Fur-
thermore, an extensive ablation study validates our key design.
DARTHSHADER found a total of 39 software faults in all modern
browsers—Chrome, Firefox, and Safari—that prior work missed. For
15 of them, the Chrome team assigned a CVE , acknowledging the
impact of our results.
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1 INTRODUCTION

The internet and the web have been game changers in the past
decades, enabling instant access to global news, constant connection
with friends and acquaintances, and many types of new business
models. Web browsers, in particular, play a crucial role in this
ecosystem, as they are the most important applications to access
the web for many users. However, the ubiquitous connectivity of the
internet also enables adversaries with malicious intent, exposing
users to potential threats as they navigate the web. A common
security risk is memory safety violations [50], which have been the
starting point for many successful attacks in the past.

As a result, we require fundamental, proactive measures to im-
prove defenses against such threats and strengthen web browsers
against various attack vectors. By using hardware-supported se-
curity features such as memory randomization (ASLR) and non-
executable memory regions, web browsers can reduce the risk of
exploits that attempt to execute arbitrary code. Moreover, rigorous
testing needs to be performed on all browser components. This in-
cludes web APIs [16, 26] and JavaScript engines [21, 23, 39, 43, 54],
given that they are often targeted due to their complexity and the
fine-grained control they expose to adversaries. In addition, sand-
boxing is a crucial defense mechanism designed to prevent code
from performing malicious actions or accessing sensitive data out-
side its intended scope [14, 37]. This technique enforces a strict
separation between the content of different websites in different
processes (called site isolation [41]) and most importantly between
web content and the privileged components of the browser, e.g.,
those with access to the file system. Technically speaking, sandbox-
ing is implemented by executing code of different sites in separate
processes with restricted authorizations. Each process is confined
by a security policy enforced at the operating system level, which
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specifies the system resources and cross-process communication
channels it has access to.

At the same time, the practical requirement and drive for better
performance in web applications, particularly in graphics-intensive
areas such as online gaming and video streaming, created a sig-
nificant demand for improved graphics processing capabilities in
browsers. One important development in this area is the recent
introduction of WebGPU [52], a cross-platform API that enables
web content to access the computational resources of GPUs. Part of
this API are WebGPU shaders, essentially small programs that run
on the GPU to perform complex rendering operations and general-
purpose computations efficiently. With WebGPU, these shaders are
provided by a website and then processed by a dedicated software
component in the browser. This component is responsible for com-
piling the shader code into a lower-level, operating system-specific
format intended for execution by the GPU. For instance, in a Win-
dows environment, the shaders would be translated into DirectX
bytecode.

Unfortunately, exposing GPU interfaces to web content leads
to new attack vectors. For example, in Mozilla Firefox and Google
Chrome, the GPU process uses a less strict sandbox for shader pro-
cessing on Windows, rendering it an attractive target. On some
operating systems, the GPU process works without a sandbox, fur-
ther increasing the risk of handling untrusted shader programs.
Consequently, input controlled by attackers ends up in a browser
process not protected by a strong sandbox, posing a potential secu-
rity risk. Given the critical nature of shader compilers in the graph-
ics pipeline and their exposure to external, untrusted inputs, one
would expect rigorous testing to ensure their security and reliability.
Contrary to this expectation, we found a significant gap in shader
compiler testing in both the literature and industry practices. While
other browser components have been extensively researched and
tested, the testing of shader compilers has been largely insufficient
and ineffective, posing a security risk that undermines the primary
defense mechanism of sandboxing. Prior attempts, such as REGEx-
FUZZER [17] and ASTFUZZER [17] require a high-quality seed corpus
for shader fuzzing and lack intermediate representation (IR) level
mutations, limiting their effectiveness in modifying complex data
structures and control flows. On the other hand, generative testing
methods such as wGsLsMmITH [35] and WGSLGENERATOR [3], which
are comparable to Csmith [57] and Xsmith [24], do not implement
seed-based mutations, resulting in insufficient branch coverage
and high rejection rates, as our empirical evaluation in Section 5.3
shows.

In this paper, we address this problem and present the design and
implementation of DARTHSHADER, a fuzzing framework specifically
tailored to effectively test the WebGPU stack in modern browsers
for memory safety violations and shader compiler errors. We im-
plemented a generator that fulfills two primary functions: On the
one hand, it generates a semantically correct input corpus that
adheres to the language specification of shaders to enable a deeper
exploration of the target under test beyond basic error handling.
On the other hand, it improves the fuzzing process by injecting new
code into an available seed corpus, thus expanding the mutation
space by a more extensive variety of expressions and instructions.
These capabilities make DARTHSHADER the first fuzzer with a fully
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statically-typed IR and the capability of both generating and mutat-
ing input. This contrasts the existing state of the art: Fuzzilli [21] has
limited static type information (due to the dynamically-typed nature
of JavaScript), and other IR-based fuzzers [13] can either only gen-
erate inputs or mutate them. Generation-based methods [3, 35, 57]
cannot leverage coverage feedback, while mutation-based ones [13]
cannot meaningfully expand the current sample (hence they can-
not add entirely new expressions). In contrast, DARTHSHADER can
correctly infer types for shaders, expand the sample by adding new
expressions, and rely on coverage guidance for target exploration.
In a second step, the shaders are converted into Abstract Syntax
Tree (AST) and Intermediate Representation (IR) formats to enable
domain-specific mutations. We designed two sets of mutations since
they complement each other: While AST-based mutations test the
robustness of the browser’s parser and lexer, which are the primary
components interfacing with untrusted shader inputs, IR-based mu-
tations target the translation and compilation phases of the shader
processing pipeline. Prior work in language fuzzing has either used
mutations on the AST or the IR level. DARTHSHADER is the first to
combine both in a single tool, relying on their unique advantages to
effectively test the shader pipeline. The resulting shaders are then
sent to the WebGPU shader pipeline, where they test the complete
processing stack, i.e., both the front-end of the shader processing
and the back-end components provided by the actual OS-specific
graphics library. Testing the complete stack ensures that we main-
tain a realistic attacker model: The back-end in particular makes
specific assumptions on the input format. Fuzzing the back-end on
its own may uncover various bugs; however, most of them cannot
be triggered from the web, which makes them uninteresting for
adversaries and vendors alike. Fuzzing the full processing pipeline
ensures that all input reaching the back-end can be controlled by an
adversary and that any bugs found are therefore security-relevant.

We implemented a prototype of DARTHSHADER and tested the
state-of-the-art web browsers Chrome, Firefox, and Safari. Our
experiments show that our approach succeeds in uncovering on
average 11% and up to 24% more branch coverage than existing
methods. At the same time, DARTHSHADER uncovered a total of
39 bugs in all shader translators used in all modern web browsers.
Furthermore, we uncovered several critical security flaws in the
Windows shader compiler pxc that can be triggered by remotely
served web content. We responsibly disclosed the found vulnera-
bilities to the vendors and worked together with them to address
the identified bugs. Acknowledging the severity of our findings,
Google has assigned 15 CVEs so far to our reports and awarded a
bug bounty for our efforts.

Contributions. In summary, the three main contributions of our
work are as follows:

e Novel IR properties: DARTHSHADER is the first language
fuzzer that features both a fully statically-typed IR and the
capability to generate and mutate input. This way, our fuzzer
can correctly infer shader types, add new expressions to
samples, and drive its exploration via coverage feedback.

¢ Novel combination of mutations: DARTHSHADER com-
bines IR and AST mutations, which have individual advan-
tages. IR mutations allow for correct type inference, while
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mutating the AST allows the generation of inputs that violate
the WGSL grammar.

o Attacker capabilities: We are the first to fuzz the entire
shader pipeline and maintain a realistic attacker model. Over-
all, our approach uncovered 39 bugs in web-exposed browser
components in Chrome, Firefox, and Safari.

To foster further research on this topic, we release the source
code of DARTHSHADER at https://github.com/wgslfuzz/darthshader
and evaluation artifacts at https://doi.org/10.5281/zenodo.13302737.

2 BACKGROUND

This section gives a short introduction to technical details to un-
derstand the relationship between browser sandboxing, WebGPU,
the WebGPU Shading Language, and fuzzing.

2.1 Browser Sandboxing

Modern browsers like Firefox and Chrome employ a sophisticated
multi-process sandboxing model to protect against potentially harm-
ful web content. This approach splits a browser into various pro-
cesses, each with specific privileges and access rights. For instance,
Chrome has a single trusted broker process and multiple untrusted
renderer processes [14]. Firefox implements its respective counter-
parts with one parent process and multiple content processes [36].
Throughout this discussion, we use the terminology from Chrome
while also referring to the respective counterpart in Firefox.

The broker process is the main browser process, running without
sandbox restrictions and full user privileges. For logical reasons,
the broker process does not directly handle untrusted web con-
tent. Instead, web content is processed in renderer processes. In
contrast to the broker process, renderer processes are forced to
request access to system resources via the main process, which
mediates these resource requests. For such requests, the privileged
processes evaluate whether the sandboxing policy allows access
to the requested resource. The primary defense against compro-
mised renderer processes is their limited access to system resources,
which are meticulously controlled and mediated by the broker pro-
cess. This split-privilege model is a defense-in-depth mechanism,
effectively restricting access from compromised renderer processes
to the host system by isolating different browser components. For
example, an attacker exploiting a vulnerability in the JavaScript
engine still needs an additional exploit to escape the sandbox.

The most common type of sandboxed processes is the renderer
process, which processes the majority of web content. The sandbox
of the renderer process is the most restrictive, with the minimal set
of privileges required to execute the specific web content. Notably,
the kernel attack surface is reduced by blocking access to Windows’
graphics subsystem WIN32K.sYS, a component historically plagued
by security vulnerabilities. Some web content, including WebGPU,
has a legitimate need to access the OS graphic subsystem. As the
renderer sandbox prevents direct access to graphics resources, such
resource requests must be outsourced to a process not confined by
tight sandboxing rules. The process that handles graphics subsys-
tem requests is called the GPU process. Compared to the renderer
process, the GPU process has a much larger kernel API surface,
including access to WIN32K.sYs. Albeit not running with full user
privileges as the main process, the sandboxing rules confining the
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Figure 1: High-level overview of the multi-process model of
Chrome with a focus on the components relevant for Web-
GPU and shader translation.

GPU process are much less restrictive. An IPC channel with mul-
tiple renderer processes and a less restrictive sandbox makes the
GPU processes an interesting target, as escaping the sandbox of
the GPU process is easier due to the increase in attack surface.

2.2 WebGPU

WebGPU is a new API designed to expose the functionality of mod-
ern graphic APIs like Vulkan, Metal, and Direct3D to the web. The
WebGPU standard effectively supersedes the predecessor WebGL
JavaScript API, which primarily mirrors the older OpenGL ES [52]
API. The goal of WebGPU is to allow richer and more complex
graphics applications to run portable on the web while providing
access to the graphics and computing capabilities of modern GPU
hardware. In contrast to WebGL, WebGPU separates the resource
management, work preparation, and submission to the GPU [1, 6].

Furthermore, WebGPU offers a low-level interface that allows de-
velopers fine-grained control over GPU resources and operations to
provide a more efficient access to the underlying hardware. Another
design constraint for WebGPU is imposed by the sandboxing ar-
chitecture, implemented in modern browsers using a GPU process.
The browser runs a single process responsible for GPU interaction,
communicating with the renderer processes through IPC [15].

A high-level overview of the different abstraction layers of Web-
GPU within the browser and the relationship to the operating sys-
tem is shown in Figure 1. WebGPU is exposed to web content via a
standardized interface. API requests and shader invocations, gener-
ally, cannot be fulfilled by the renderer process due to sandboxing
policies. Instead, API requests and shaders are passed via IPC to the
GPU Process. In the GPU Process, API requests are sanitized and
forwarded to the Dawn Backend. This back-end is essentially an
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abstraction layer of the OS-specific graphics library, such as DirectX
on Windows and Mesa on Linux. As the shader language of Web-
GPU is unknown to native graphics back-ends, the shaders have to
be translated into an appropriate format. For example, on Windows
shaders are translated from the platform-independent WebGPU
shader language into HLSL (High-Level Shading Language) [4].
Since the shader code is entirely controlled by third parties, the
shaders have to be considered untrusted. The Chrome component
implementing this translation, called TINT, will be explored in more
detail later. Once the shaders are translated, they are forwarded
to the native back-end alongside other API requests. The native
back-ends typically consist of a userland component running in
the address space of the GPU processes. Noteworthy, despite the
shaders passed to the native back-end being generated by TINT,
adversaries still exercise a high degree of control. This is a conse-
quence of the shader translator having to preserve the semantics of
the input shader, including input/output behavior, loop structures,
and function calls. Once the user-mode part of the shader compila-
tion finishes, compiled shaders are passed to the kernel, eventually
reaching the GPU hardware.

2.3 WGSL & Shader Translation

The WebGPU Shading Language, also known as WGSL, is the shad-
ing language utilized in WebGPU. The language enables developers
to write shaders, which are small programs executed on the GPU
that define how graphical elements are rendered in web applica-
tions, including tasks like lighting, texturing, and effects. The WGSL
coding style closely resembles that of Rust; a code example can
be found in Figure 3a. WGSL is statically typed and designed to
be similar to other shading languages like MSL (Metal Shading
Language) [6] and HLSL. WGSL provides features necessary for
modern graphics programming while being tailored specifically
for the WebGPU API. The language is closely integrated with the
WebGPU AP, allowing shaders to interact with other parts of the
rendering pipeline, such as vertex stages, and communicate with
buffers and textures.

Shader translation is a crucial step in the graphics rendering
process. WebGPU shaders, written in the shading language WGSL,
are not directly accepted by any graphics back-end such as DirectX
or Metal. Hence WGSL shaders must undergo translation into a
platform-specific shader format, such as SPIR-V, HLSL, or MSL. The
translation from WGSL to an OS-specific format ensures compat-
ibility across different OS-specific graphics back-ends. In Firefox,
the NAGA [5] component handles the translation from WGSL to
the OS-specific shader format. Similarly, in Chrome, the TINT [2]
component fulfills this role. The shader translators are the first
component processing WGSL shaders; the renderer process gen-
erally treats the shader as a blob. Hence the translators are the
first component being exposed to potentially malicious shaders.
As shown in Figure 1, this processing occurs outside of the tightly
sandboxed renderer process. Once the shaders have been trans-
formed into an OS-specific format, they are passed down to the
graphics back-end provided by the OS. On Windows, this native
back-end is DirectX, which consumes shaders in the HLSL format.
DirectX first translates HLSL into LLVM IR and subsequently runs
various optimization passes. This entire optimization process runs
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Figure 2: High-level overview of DARTHSHADER, showing
the relationship between fuzzer components and the SUT.

in the GPU process of the browser, in a component called Dxc.
Once optimization is complete, bxc emits bitcode intended for the
GPU-specific kernel driver.

2.4 Language Fuzzing

Fuzzing is a software testing technique used to discover bugs in soft-
ware systems. It involves providing invalid, unexpected, or random
data as inputs to a program and observing its behavior. These in-
puts are produced using either mutation operations or generational
methods. In cases where the software processes binary file formats,
typical mutations might include bit-flipping or inserting specific
integer values [8, 55]. In contrast to targets consuming a binary file
format, language processors pose a different set of challenges. Here,
inputs are expected to adhere to the rigid rules of a grammar or
language specification. Thus, traditional mutations are often inef-
fective for language processing because they prevent the program
from parsing the input correctly. Such inputs lead to an early exit
of the target. To address this issue, fuzzers for language inputs usu-
ally work with an abstract syntax tree (AST) [7, 23, 25, 51, 53, 54].
Instead of flipping bits, they apply tree-edit operations to the AST,
allowing for more sophisticated manipulation that respects the
structure of the language, leading to more effective testing. Success-
fully applying these AST mutations to statically typed languages
is not trivial. Consider applying mutation operations to a dynami-
cally typed language such as JavaScript. Replacing the inputs of an
addition operation will exercise significant portions of a JavaScript
engine, even if the mutation results in a runtime error during script
execution. In contrast, in statically typed languages, mutations
that break the static typing rules result in early exits of the tested
application. This premature termination prevents the fuzzer from
exploring deeper and potentially vulnerable code paths.

3 DESIGN

To effectively test shader translators and shader compilers, we
introduce a new approach, DARTHSHADER. We commence with a
description of the overall design and how its components interact.
Then, we discuss how inputs are represented on the AST and the IR
layer. Finally, we explore key components in more detail, explaining
how they operate on the two input representations.
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A high-level overview of our approach is shown in Figure 2. As
an optional first step @, we import existing shader files as seeds.
While this is common for binary file format fuzzers, some language
fuzzers do not support this capability [7]. During parsing, DARTH-
SHADER translates all provided shaders into an AST representation
as well as an IR representation. In addition to seeds, the initial cor-
pus comprises samples emitted by our seed generator @. Analog
to imported seeds, generated samples are stored in an AST and an
IR representation, not in a textual representation. The following
section outlines our motivation for including two distinct represen-
tations. Because these AST and IR representations are internal to
DARTHSHADER, they must be converted @ to a textual represen-
tation before passing them to the system-under-test (SUT). When
converting an AST, simply unparsing the tree yields a WGSL shader,
which is the input expected by shader translators. Transforming
the IR to text is a more intricate process; on a conceptual level,
we lift the IR to WGSL, resulting in a WGSL shader as well. Once
lifting completes, we pass the shader to the SUT @. Interestingly,
our SUT can consist of up to two components: Our primary and im-
mediate targets are shader translators, which modern web browsers
use to process WGSL shaders. Additionally, the SUT may include
a back-end compiler, such as pxc. If this is the case, our fuzzing
input is first processed by the shader translator, functioning as
the front-end, before the translator’s output is then in turn passed
to the back-end shader compiler. This approach allows us to test
both the shader translator and compiler simultaneously. It is note-
worthy that not all our inputs necessarily reach the back-end, as
the front-end may discard inputs, for example, when they cannot
be parsed. As is typical for fuzzing, we prepare the SUT by com-
piling it with coverage feedback instrumentation and ASAN for
sanitization before commencing the fuzzing phase. Executing the
instrumented target application with a shader can lead to one of
three outcomes: If the application crashes, we save the relevant
sample for manual inspection. If an execution reaches new code
paths, we keep those samples for further processing ©. All other
samples are discarded. The samples we retained for achieving novel
coverage are sent to a minimizer ®, which iteratively reduces the
samples by removing parts that do not cover new edges. Once min-
imization is complete, the reduced sample is added to the queue,
which contains all samples that contribute to additional coverage.
From this queue, the mutator @ selects an input and transforms it
based on the available mutations. The set of available mutations
depends on the type of selected sample. More precisely, IR samples
undergo a set of IR mutations whereas AST samples are modified
via tree-edit operations.

3.1 Language Representation

When designing a fuzzer, one key decision is selecting the abstrac-
tion layer at which mutations will be applied. This choice can be
straightforward for binary file formats, but it is more complex for
language fuzzers due to a larger design space. In Figure 3, we de-
pict three abstraction layers commonly encountered in language
fuzzers. On the left side, Figure 3a illustrates the source code of a
shader program. This is the input representation as processed by the
SUT. However, text is not well-suited for mutations commonly used
in language fuzzing. Instead, language fuzzers typically represent
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inputs as either an AST or IR, shown in Figure 3b and Figure 3c. In
the following, we discuss the respective advantages and downsides
of these two abstraction layers.

Abstract Syntax Tree (AST). One common choice [7, 23, 51, 53,
54] for representing inputs in language fuzzing are ASTs, since trees
are straightforward to mutate via tree-edit operations. Furthermore,
AST mutations allow rigorous testing of lexers and parsers in the
SUT, e.g., adding reserved keywords or inserting literals that ex-
ceed standard sizes (such as a number that cannot be represented
by 64 bits). However, implementing mutations on ASTs also has
downsides. Consider a mutation that changes function color()
from Figure 3a to color(a: vec4<f32>),i.e., adds a function ar-
gument of type vec4<f32>. Implementing such a mutation on the
AST representation shown in Figure 3b is cumbersome. Not only
do we have to add the argument, but we also need to find all callers
of the mutated function and extend the parameter lists with a vari-
able of the correct type. While not an impossible task, the AST
representation is unsuitable for such mutations.

Intermediate Representation (IR). In contrast, the IR repre-
sentation shown in Figure 3c allows certain mutations, such as
the aforementioned extension of a function call with an additional
argument with ease. Not only do we precisely know all callers of
color(), we also know the type of all expressions in scope at the
respective call site. Moreover, other complex mutations, such as
inserting new types or changing the scope of an expression, are
straightforward to implement. These advantages of IR representa-
tions contributed to their usage [13, 21] in fuzzing. Unfortunately,
this abstraction layer is not a panacea for all challenges in language
fuzzing. The advantages of AST mutations are aspects for which the
IR representation falls short. For example, an IR internally repre-
senting numbers as 64 bit cannot emit an oversized literal, as such
a number is simply unrepresentable in the IR.

Dual Approach. Rather than choosing between an AST and an
IR representation, one insight of our design is to incorporate both
levels of abstraction. This makes our fuzzer the first that can har-
ness the specific benefits of each, without the limitations typically
associated with either. As part of our evaluation in Section 5.4, we
show that mutating inputs on an AST layer is well-suited for ex-
ploring front-end translators such as TINT. At the same time, an IR
approach excels in testing back-end translators such as bxc. In order
to thoroughly stress-test the entire shader translation pipeline, we
posit that including both representations is essential and evaluate
this insight in an ablation study (see Section 5.4).

3.2 Key Components

With the overview shown in Figure 2 in mind, we present key
components in greater detail. A key feature distinguishing our
design from existing language fuzzers is that it uses a statically-
typed IR and has the capability to both generate and mutate inputs.
In the following, we first describe a mechanism for generating
WGSL samples @. Next, we explain the methods for mutating these
samples at both the IR and AST layers @, and we conclude by
exploring the minimizer @.

Generator @. In absence of informed seeds, the generator pro-
duces an initial corpus of inputs. This initial generation aims for a
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struct VertexOut {
@builtin(position) pos: vec4<f32>,
@location(@) col: vec4<f32>

}

fn color() -> vec4<f32> {
return vec4<f32>(0, 0, 0, 0);
}

fn vert_main(@location(@) pos: vec4<f32>)
-> VertexOut {
var out: VertexOut;
out.pos = pos;
out.col = color();
return out;

(a) Textual representation of WGSL shader

(b) AST representation
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Expressions:
[1]: FunctionArgument(0) // vec4<f32>
[2]: Localvariable([11) // VertexOut
[3]: Access { [2], idx: @ } // vec4<f32>
[4]: Access { [2], idx: 1 } // vec4<f32>
[5]: CallResult([1]) // vec4<f32>
[6]: Load { ptr: [2] }} // VertexOut

// Types:

Statements:

EmitExpr([3])

Store { pointer: [3], value: [1] }
EmitExpr([4])

Call { fun: color, args: [], res: [5] }
Store { pointer: [4], value: [5] }
EmitExpr([6])

Return { value: Some([6]1) }

(c) IR representation

Figure 3: Multiple representations of a shader. (a) Source code, as processed by the browser. This format is amenable to byte-level
mutations only. (b) An excerpt from the shader, parsed into an AST. This format supports tree-based mutations, such as
swapping nodes. (c) The IR. This format facilitates domain-specific mutations, such as altering function prototypes.

high semantic correctness rate, i.e., the majority of samples should
conform to the language specification. While a fuzzer should also
test inputs deviating from the input specification, these violations
will be introduced by mutation operations anyway. In contrast,
mutation operations typically fail to convert semantically incorrect
inputs into ones that meet the required specification. Hence, gener-
ating mostly correct inputs as a first step allows for reaching deeper
into the target instead of only exploring shallow error handlers.
To generate a WGSL program, we first create a pool of types
that will be available to this program. Initially, this includes basic
scalar types such as int32. We then expand this pool by randomly
adding more complex types like structs and vectors. For structs, we
randomly choose the number of member variables and select the
respective from the pool of types created so far. Once all types are
defined, we proceed to create function prototypes and their bodies.
This involves iteratively constructing a list of statements, expres-
sions, and their respective inputs. For example, an if/else statement
needs a Boolean condition, which we select from previously gen-
erated expressions. If the necessary expression is unavailable, we
discard the current statement or expression and try again. This
process continues until we reach a predefined limit on function
length, ensuring the program generation algorithm terminates.

Mutations @. One key characteristic of a fuzzer is the set of
mutations available for transforming an input to another one. Our
design consists of two classes of mutations, IR mutations and AST
mutations. The first class, IR mutations, are intended to stress-
test the later translation and compilation stages that operate on
intermediate representations:

e Operators: mutates unary and binary operators, e.g., re-
places a plus operation with a multiplication.

e InputReplace: exchanges the inputs used by expressions
and statements.

o Literals: replaces literals such as integers and floats either
with a random choice or selects from a list of interesting
integers, such as powers of 2.

o Built-ins: exchanges calls to built-in functions with a differ-
ent built-in function call.

o Types: mutates types, e.g., by resizing arrays or changing
the types of scalar variables.

o CodeGen: emits additional code at a random location in the
input program.

Despite IR mutations testing for a sizable set of potential errors,
by design they cannot find some classes of errors in the domain of
shader translators. When lifting © IR code to WGSL, the resulting
AST adheres strictly to the grammar. Hence, an entire subset of
bugs [43] remains unreachable via IR mutations. In order to stress-
test the lexer and parser, we have six AST mutations at our disposal:

e RecursiveReplace: recursively inserts a subtree [7] into
itself while accounting for the respective node types. This
mutation generates pathological trees with a particularly
deep nesting of child nodes.

o Delete: removes an AST node and all its children.

o Replace: replaces the text of AST nodes with a value from
a dictionary containing domain-specific tokens.

o Splice: crossover mutation that splices a random AST from
the corpus into a second AST.

e Swap: reorders the children of a single AST node.

o Identifier: replaces an identifier (e.g., variable name) with a
different identifier used elsewhere in the input.

Minimizer @. Interesting samples, i.e., WGSL inputs that trigger
uncovered edges, are scheduled for minimization before adding
them to the corpus. This step is essential to prevent unbounded in-
put growth, a common issue resulting from splicing operations and
code generation, which increase input size. Keeping input size small
has two significant advantages. First, smaller inputs require less
processing time in the SUT and thus increase throughput. Second,
our goal is to retain samples that uncover new, unexplored edges
of the SUT. Keeping inputs small is beneficial because it ensures
that future splicing mutations—which combine elements from dif-
ferent inputs—retain these valuable features without being diluted
by irrelevant data.

The minimization process consists of two steps. Initially, we
identify the edges that are both new and consistently triggered by
the input. To this end, we repeatedly execute the input and record



DarthShader: Fuzzing WebGPU Shader Translators & Compilers

the consistently reached edges. Non-deterministically exercised
edges may, e.g., be an artifact of randomized data structures such
as hash tables or memory allocators. The requirement for removing
non-deterministic edges is imposed by the second step: We succes-
sively remove small parts of the input and verify whether we still
reach all novel edges. Assuming the set of novel edges contains
non-deterministic edges, minimization becomes challenging. Most
likely, at least some of the flaky edges are no longer exercised by
minimized variants; hence, we fail to remove any input parts. The
specific techniques for minimizing an input depend on its type: For
AST inputs, we minimize the tree by pruning nodes. For IR inputs,
several strategies are available. Examples include the removal of
global variables, expression simplification, and statement deletion.

4 IMPLEMENTATION

We implement our proposed design in a tool called DARTHSHADER,
amounting to 10, 000 lines of code. While not building on a domain-
specific fuzzer, we do reuse components of LIBAFL [20] for general
fuzzer housekeeping, TREE-SITTER [34] for parsing shaders, and
NAGa [5] for its IR. Below, we highlight two of our building blocks.

LIBAFL. DARTHSHADER uses LIBAFL components for general
fuzzing housekeeping, such as coverage evaluation and commu-
nication with the SUT. Our implementation uses MOPT [33] for
scheduling and a power-schedule [11] for seed selection. When
exploring their respective configuration parameters, we observed a
5% difference in coverage over 24 hours between the best and worst
configuration. We selected the best-performing set of parameters
for all following measurements.

NAGA. Our implementation leverages the IR exposed by NAGA,
a shader translator part of Firefox. The IR is designed to express
semantics common to graphics shaders in general, not only WGSL.
Furthermore, NAGA includes the ability to lift the IR to WGSL source
code, exactly the format consumed by the SUTs. One complimentary
upside of using NAGA is its ability to utilize seed files written in
SPIR-V and GLSL, two widely used shader languages. This capability
enlarges the set of available seed files, increasing bug-finding by
importing regression tests of other shader processors.

5 EVALUATION

To evaluate our approach, we compare DARTHSHADER against state-
of-the-art fuzzers and domain-specific test-case generators. The
two main metrics for comparing the different approaches are code
coverage and the semantic correctness rate of produced inputs.
Furthermore, we perform an ablation study scrutinizing individual
design decisions of DARTHSHADER. Finally, we test whether our
prototype can uncover previously unknown bugs in components
exposed to the web, rendering their security a delicate matter.

5.1 Setup

We first describe the experimental setup used during our evaluation,
including the hardware environment, tested fuzzers, and evaluation
targets. For all experiments and ablation studies, we perform 10
repetitions over either 24h or 48h. Each fuzzer and its respective
target is pinned to a single CPU core, following general guidelines
for fuzzing evaluations [29].
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Hardware Environment. All experiments were performed on
an AMD EPYC 9654 processor with 755 GB of RAM and a SSD as
backing storage.

Target Applications. We evaluate code coverage and semantic
correctness rate on four web-exposed targets. Furthermore, our bug
finding efforts includes an additional target, ANGLE, not supported
by competing fuzzers.

e TINT (commit 3de@f00), the shader compiler of Chrome
supporting compilation from WGSL to HLSL, SPIR-V, and
Metal, the respective shader languages of Windows, Linux,
and macOS. Our fuzzing harness for TINT translates a single
WGSL shader to each of the three target languages.

e DXxC (commit 0781ded), the DirectX shader compiler taking
HLSL as input and producing an output format based on
LLVM IR. Our fuzzing harness first translates WGSL shaders
to HLSL via TINT and subsequently passes the HLSL code to
DXC, so that setup replicates browser usage.

® NAGA (commit 61d779d), the shader compiler of Firefox sup-
porting compilation from WGSL to HLSL, SPIR-V, and Metal.
Analog to the TINT harness, our NAGA harness translates a
single WGSL shader to HLSL, SPIR-V, and Metal.

e WGSLC (commit ad13d16), the shader compiler of Safari
translating WGSL to Metal. No other output languages are
supported.

Fuzzers. In the following, we describe the six fuzzers that are
evaluated based on code coverage and semantic correctness rate.

e DARTHSHADER, our approach implements generation on

an IR layer and mutations on both IR and AST layer. In this
variant of our fuzzer, we include informed seeds.

e DARTHSHADER--, a variant of DARTHSHADER that runs
without informed seeds. It produces samples with a combi-
nation of generation and mutations.

WGSLSMITH [35] (commit 987ddf1), a domain-specific gen-

erator producing WGSL shaders. This tool is purely gener-

ational and does not support coverage feedback. For our

evaluation, we wrapped wGsLsMITH with LIBAFL such that

we only store samples increasing code coverage.

® WGSLGENERATOR [3] (commit ffbaad4), a domain-specific
WGSL generator. Analog to wGsLsMITH, we added a LIBAFL
wrapper for storing only samples increasing code coverage.

e REGEXFUZZER [17] (commit 3de@f@0), a libfuzzer-based
fuzzer integrated in TINT. As this fuzzer and its custom mu-
tations are fully integrated, TINT it the only supported target.
This fuzzer highly depends on informed seeds and reaches
no noteworthy coverage on uninformed seeds.

® ASTFUZZER [17] (commit 3de@f@0), a libfuzzer-based fuzzer
integrated in TINT. For the same reason as REGEXFUZZER, this
fuzzer is evaluated on TINT only. Likewise, this fuzzer highly
depends on informed seeds.

Seeds. While using informed seeds is trivial for binary fuzzers,
not all language fuzzers support this capability. For example, the
JavaScript fuzzer Fuzzilli [21] did not include this feature initially.
However, supporting seeds is beneficial because they allow variant
analysis of old bugs and utilizing test cases. We evaluate the perfor-
mance of DARTHSHADER with and without seeds. Our competitors
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Table 1: Median semantic correctness rate in percent and
standard derivation on all front-end translators. pxc is a
back-end compiler and therefore excluded from this metric.

Fuzzer TINT NAGA WGSLC
DARTHSHADER 14.26 £0.76 18.13+1.48 16.88+0.81
DARTHSHADER-- 12.68+0.95 14.49+1.26 15.47+1.65
WGSLSMITH 0.77 0.83 6.08+0.01
WGSLGENERATOR 0.004 0.004 0.04
REGEXFUZZER 6.65+0.10 - -
ASTFUZZER 99.25+0.05 - -

either require informed seeds (ASTFUZZER and REGEXFUZZER) or
cannot use them at all (WGSLSMITH and WGSLGENERATOR). We use
the test cases of TINT containing 7, 267 WGSL files as corpus.

5.2 Semantic Correctness Rate

The semantic correctness rate quantifies the percentage of samples
an SUT processes successfully. Precisely, we assess the proportion
of WGSL shaders a SUT accepts and converts into a back-end-
specific output format. Only such translated shaders are forwarded
to OS-specific compiler back-ends. Consequently, a correctness rate
approaching 0% is inadequate for testing downstream components,
as most inputs are discarded before ever reaching the back-end. On
the other hand, a correctness rate of 100% implies that no invalid
inputs are produced, despite providing inputs containing errors can
be crucial to detect bugs in the translation step. Table 1 shows the
correctness rate measured for the front-end translators TINT, NAGA,
and wasLc. These rates are based on actual executions rather than
queue samples, thus avoiding queue survivor bias.

We observe that DARTHSHADER yields a correctness rate of 12%-
18%. This rate allows for putting significant pressure on front-end
translators due to samples violating the specification while also
reaching OS-specific back-ends. Noteworthy, a correctness in the
range of 12%-18% does not imply a SUT spends the majority of
its processing time in the front-end. Samples reaching the back-
end require more processing time, whereas semantically incorrect
samples are rejected quickly. wGsLSMITH and WGSLGENERATOR yield
a correctness rate < 1% across most targets. Notably, both tools
exhibit a significantly higher correctness rate with waesrc, which
we suspect results from the less mature state of the validator. In
stark contrast, the correctness rate of ASTFUZZER approaches 100%,
indicating that most inputs conform to the specification. However,
a correctness rate this high is counterproductive, as completely
correct samples exert minimal pressure on the front-end translators.

A balanced semantic correctness rate is required to test both
front-end and back-end translators.

5.3 Coverage Experiments

We use coverage as a metric to compare fuzzer performance. For
this measurement, we first compile the target applications with
llvm-cov [32]. Then, we replay the inputs from all fuzzers on the
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same instrumented binary to derive a fair and consistent compar-
ison. We use branch coverage on TINT, WGSLC, and DXC. As an
exception, we use line coverage for NAGA. The rationale behind
this choice is Rust’s pervasive usage of pattern matching for di-
verging control-flow, which does not correspond to a source-code
if-else construct. Hence llvm-cov branch coverage does not consider
pattern matching induced control-flow constructs. As mentioned
earlier, each fuzzer runs 24 hours per target with ten repetitions to
account for inherent randomness in the fuzzing process.

Coverage over Time. Branch coverage over time is one of the key
performance criteria of fuzzers. We show this metric for three target
applications in Figure 4 and line coverage for NAGA in Figure 8a.
Taking into account only fuzzers without access to informed seeds,
DARTHSHADER-- outperforms its competitors WGSLGENERATOR and
WGsLSMITH. Noteworthy, our approach based on generation and
mutation achieves almost the same coverage as the vast corpus of
informed seeds. Coverage inherent in the seed corpus is marked by
the dotted horizontal line. When comparing DARTHSHADER with
competitors requiring informed seeds, our approach either yields
higher (ASTFUZZER) or similar coverage (REGEXFUZZER). As the seeds
already cover a significant number of branches, our measurements
show only a small improvement over the informed corpus.

Exclusively Covered Branches. In addition to coverage over
time, we measure the branches exclusively covered by a single
fuzzer [9], i.e., branches that are not covered by competitors. For
this measurement, we merge the coverage results of the ten runs
per fuzzer and target. For example, we take all ten runs of DARTH-
SHADER on DXC and compute the number of branches not covered by
WGSLSMITH and WGSLGENERATOR. In order to ensure a fair compar-
ison, this part of the evaluation separates the tools based on access
to seeds. On TINT, we separate the evaluation into two groups, one
having access to seeds, whereas the other group does not. On all
other SUTs, we compare DARTHSHADER-- to its competitors be-
cause, by design, none of them can utilize seeds. The results of this
evaluation are shown in Figure 5. On all targets, DARTHSHADER and
DARTHSHADER-- cover branches not covered by any other fuzzer.
Particularly interesting are the comparisons between groups of
fuzzers without access to an informed seed corpus. The combina-
tion of generation and mutation implemented in DARTHSHADER--
strongly outperforms the competing approaches.

DARTHSHADER outmatches competitors at testing front-end
shader translator and back-end compilers.

5.4 Ablation Study

To better understand the effects of our key idea, applying muta-
tions at different levels of abstraction, we conduct an ablation study.
This follows best practices [44] and serves to measure individual
design decisions in isolation. This study is designed to isolate the
contribution of mutations on individual layers, showing their con-
tribution to branch coverage. To this end, we test four ablations of
DARTHSHADER over a 48-hour period, running each ablation ten
times. None of the configurations have access to informed seeds.
Instead, the initial corpus is composed of samples produced by our
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Figure 4: Number of branches covered by running fuzzers over 24h on pxc, TINT, and wGsLc. Displayed are the median and the
60% interval of 10 repetitions. The dotted horizontal line shows the coverage inherent in the informed seeds corpus used by
DARTHSHADER, ASTFUZZER and REGEXFUZZER. The other fuzzers do not have access to the informed seeds.

DARTHSHADER
REGEXFUZZER
ASTFUZZER

Exclusive Coverage

DARTHSHADER--
WGSLSMITH
WGSLGENERATOR

TINT TINT WGSLC DXC  NAGA
(informed)

Figure 5: Logarithmic plot showing the branches exclusively
covered by DARTHSHADER and its competitors. For NaAGa line
coverage is used (see Section 5.3). To allow a fair comparison,
we separate the tools based on access to informed seeds. To
derive this metric, we merged the coverage of ten repetitions
per fuzzer on each target.

generator, as described in Section 3.2. After generating the initial
corpus, samples are mutated as also described in Section 3.2.
¢ IR disabled, a configuration with IR mutations disabled. All
mutations are solely based on tree-operations.
e AST disabled, a variant that disables AST mutations and
performs its mutations only on the IR layer.
¢ IR delayed, a variant of DARTHSHADER performing exclu-
sively AST mutations during the first 24h. After 24h, we
enable IR mutations as well. The purpose of this ablation
is to measure whether IR mutations contribute additional
coverage on a corpus constructed from AST mutations.

o AST delayed, a variant performing exclusively IR mutations
during the first 24h. Similar to IR DELAYED but with roles
reversed (i.e., we enable AST mutations after the 24h mark),
we measure whether AST mutations contribute additional
coverage on a corpus constructed from IR mutations.

The results of the ablation experiments on TINT, WGSLC, and DXC
are depicted in Figure 6, the results on NAGA in Figure 8b. Our anal-
ysis shows that on the front-end translators TINT, wGsLc, and NAGA,
ablations that prioritize AST mutations (IRDELAYED and IRDISABLED)
perform better than those focusing on IR mutations. Notably, in-
troducing IR mutations after 24 hours in the IRDELAYED setup does
not improve coverage compared to the IRDISABLED scenario. This
observation aligns with the fact that shader front-ends primarily
handle parsing and transforming the parsed AST, suggesting that
mutations at this level thoroughly cover the SUT.

Conversely, the back-end compiler pxc shows different results.
Here, configurations with IR mutations outperform those with AST
mutations. Enabling AST mutations after 24 hours does not en-
hance branch coverage. pxc is based on LLVM [30] and its primary
purpose is optimizing code with a pipeline of optimization passes.
Each pass transforms the LLVM IR, with the goal of producing
faster code. The fact that IR mutations are more effective for testing
Dxc corroborates findings from front-end translators: Mutations
operating at a similar abstraction layer as the SUT are the most
effective ones. We believe this to be the consequence of these muta-
tions having a direct impact on the form of the input as considered
by the target, while mutations on another abstraction level may
have no semantic impact on this form of the input. For example,
replacing one variable by another on the IR level may change the
whole meaning of the IR, but the AST’s structure remains identical.

AST mutations work best for exploring the front-end, while IR
mutations excel at covering branches in the back-end. Testing
the entire pipeline requires a combination of both.

The IRDELAYED ablation leads to a noteworthy observation when
evaluating coverage in the latter half of the experiment, specifically
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Figure 6: Ablation study measuring the impact of IR and AST mutations on three shader translators. Most branches are reachable
via AST mutations on the front-end translators TINT and waGsLc. In contrast, pxc is explored much better by IR mutations, with

AST mutations contributing little additional coverage.

after activating IR mutations on a corpus initially created through
AST mutations. It is important to recall that the fuzzing process
for pxc first sends WGSL shaders through TINT for translation into
HLSL before passing them to pxc. Enabling IR mutations does not
affect TINT’s coverage, but when the HLSL output from TINT is pro-
cessed by Dxc, there is a noticeable improvement in coverage. This
observation implies that delayed IR mutations do not influence the
front-end translator TINT but significantly impact the downstream
component bxc. WGSL shaders contain inherent complexities that
AST mutations alone cannot adequately explore, confirming our
design strategy, which integrates both AST and IR mutations.

Operations that have no effect in the front-end application
may still have a large impact on the back-end.

5.5 Found Bugs

Excavating new and interesting bugs is the key feature of any fuzzer.
To test the effectiveness of our tool, we ran multiple fuzzing cam-
paigns with DARTHSHADER on WGSLC, TINT, DXC, and NAGA. It is
noteworthy that the latter is written in memory-safe Rust. Hence,
out-of-bound accesses and other issues traditionally plaguing C/C++
are not a security concern and affect availability only. However,
logical flaws resulting in mistranslated shaders affect even memory-
safe languages. Over the course of several weeks, we discovered
39 bugs in total, with at least one bug in each scrutinized compo-
nent. Despite the shader translators being tested by their respective
vendors with fuzzing (e.g., chromium 335245351), DARTHSHADER
uncovered a wide variety of bugs in various stages of the shader
compilation pipeline. Bug classes identified during fuzzing include
out-of-bound-accesses in the translator front-end, incorrect code
emission in the translator back-end, and memory-safety violations
in OS-specific compilers. We provide a complete list of all issues
identified so far in Table 2.

Case Study: Incorrect Code Generation. When fuzzing WGSL
shader translators, we discovered several logical errors during
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shader translation. Specific instances include errors wgpu 5547 and
tint 2079. In both cases, the respective shader translator emitted
incorrect SPIR-V code, potentially causing subsequent errors in
downstream shader compilers. It is important to note that this type
of error also impacts NAGA. Although NAGa is safeguarded from
memory safety violations due to its use of the Rust programming
language, it is still susceptible to generating faulty code from logical
errors, a problem common across all programming languages. The
issue in NAGA is particularly notable because the root cause is not
an error in the SPIR-V specific back-end of the shader translator. In-
stead, the flaw stems from the WGSL validation pass, which should
reject invalid shaders. Due to an oversight, the validator accepts
a malformed WGSL shader, leading to incorrect SPIR-V code. This
oversight is problematic in the context of SPIR-V because if such a
flawed shader is accepted, it puts other NaGa lifters at risk, such as
HLSL and Metal, none of which can handle malformed shaders.

Case Study: Memory Safety Violations. In addition to logic
bugs, our fuzzing campaigns on shader translators uncovered multi-
ple memory-safety violations. Note that we also found out-of-bound
accesses in NAGA. However, these are strongly mitigated by the
Rust programming language. In the following, we put the spotlight
on two bugs in pxc, emphasizing the need to test not only the front-
end translators but also downstream components. In particular, the
effectiveness of this fuzzing pipeline hinges on the semantic cor-
rectness of the generated and mutated shaders, as only semantically
correct shaders are passed to back-end compilers.

One of the security vulnerabilities found by DARTHSHADER is
CVE-2024-3515. Figure 7a shows an HLSL shader that triggered
a memory corruption in affected versions of pxc (this was fixed
after our reporting). Specifically, in line 7 of the HLSL shader, there
is a self-assignment of a static struct. During optimization, this
self-assignment is correctly identified as redundant and marked for
removal. However, in the function ScalarReplAggregatesHLSL,
both the source and target of the self-assignment are deleted sepa-
rately. Failing to handle the corner case where target and source of
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Table 2: Overview of the 39 bugs we found in different targets. All bugs have been responsibly disclosed and reported pseudony-
mously (as ‘wgslfuzz’). The column Bug ID links to the associated CVE record or bug report. At the time of submission, not all
bug reports have been made public by the respective maintainers due to security concerns.

SUT Bug ID Browser Status Description

angle chromium 329271490 & €© @ fixed Stack out-of-bound access in shader translation

dxcompiler chromium 1513069 0] open  Heap OOB in dxil writer due to large binding ids
dxcompiler CVE-2024-2885 0] fixed Heap UAF in dxcompiler via tint generated shader
dxcompiler CVE-2024-3515 0] fixed Heap UAF in dxcompiler via tint generated shader
dxcompiler CVE-2024-4948 0] fixed  Heap UAF in dxcompiler via tint generated shader
dxcompiler CVE-2024-4060 (0] fixed  UAF in dxcompiler via tint generated shader

dxcompiler CVE-2024-4368 0] fixed  Memory safety violation in dxcompiler via tint generated shader
dxcompiler CVE-2024-5160 0] fixed  Heap OOB via tint generated shader

dxcompiler CVE-2024-5494 o fixed Heap UAF due to incorrect removal of switch statements
dxcompiler CVE-2024-5495 o fixed Heap UAF due to incorrect removal of phi nodes

dxcompiler CVE-2024-6102 0] fixed  Heap OOB due to broken control flow

dxcompiler CVE-2024-5831 0] fixed  Heap UAF caused by incorrect dead-code elimination
dxcompiler CVE-2024-5832 0] fixed  Heap UAF due to incorrect phi node update

dxcompiler CVE-2024-6290 0] fixed  Heap UAF caused by incorrect vector flattening

dxcompiler CVE-2024-6292 o fixed Heap UAF due to incorrect instruction folding

dxcompiler CVE-2024-6103 0] fixed Heap UAF when replacing phi nodes with select instructions
dxcompiler CVE-2024-6293 0] fixed  Heap UAF caused by incorrect loop induction optimization
dxcompiler CVE-2024-6991 0] fixed  Stack use-after-return during lowering of matrix instructions
tint tint 2190 0] fixed  ICE: Error during type validation results in crash

tint tint 2201 o fixed ICE: Reached an unreachable(), in turn crashing the SUT

tint tint 2202 ® fixed Near-null deref in IR shader translator

tint tint 2055 0] fixed  ICE: Incorrect validation of pointers-to-pointers

tint tint 2056 0] fixed  ICE: Incorrect typing of array() with mixed types

tint tint 2058 9 fixed  ICE: Incomplete types used as sub-types trigger a crash

tint tint 2068 0] fixed  Accepting a malformed shader triggered an ICE

tint tint 2076 0] fixed ICE: crash when multiple entry points duplicate bindings
tint tint 2077 (o) fixed ICE: MergeReturn() crashed when emitting an exit instruction
tint tint 2078 ® fixed SPIR-V validation: Missing constructor calls

tint tint 2079 0] fixed  SPIR-V validation: Incorrect vector code generation

tint tint 2092 ® open Error in the SPIR-V validator itself

tint tint 2194 0] open  SPIR-V validation: Invalid codegen for OpConstantComposite
naga naga 2560 © fixed  OOM triggered when compiling wgsl shader

naga naga 2568 © fixed Index out of bounds in expression lowering

naga wgpu 4547 © open  Index out of bounds in analyzer

naga wgpu 4512 © open Internal error: entered unreachable code

naga wgpu 4513 © open  Panic in HLSL writer when translating push constants

naga wgpu 5547 © fixed  Accepting a malformed shader results in invalid SPIR-V code
wgsle webkit 268148 @ open  Heap UAFin invalidatelterators

wgsle webkit 273407 @ fixed Assertion violation during type inference

wegsle webkit 273411 & fixed Type checker asserts during parsing of corrupted shader

the assignment are identical leads to a double-delete error in the
Chrome GPU process.

Another HLSL shader triggers a memory corruption in DXC
as shown in Figure 7b. The memory corruption in the Chrome
GPU process has been assigned CVE-2024-2885. The root cause
of the issue is an HLSL-specific optimization pass in pxc called
HLMatrixLowerPass. At the beginning of the optimization, the
pass first extends the LLVM IR with an internal stub function. Later,
a call to this stub is added. The call instruction is added between

the IR code corresponding to lines 3 and 5. Once the pass finishes,
the stub function is deleted. However, the inserted call instruction
remains. In consequence, the call instruction references the deleted
stub function. Later, a dead-code-elimination pass correctly iden-
tifies all code following the while loop (line 2) as dead, because
the loop contains no break condition. Attempting to remove the
dead code containing a dangling pointer ultimately results in a
memory-safety violation, crashing the GPU process.
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struct MyStruct { float4x2 foo() {

1 1
2 int mo; 2 while (true) {

R H 3 3

4 static MyStruct s; 4 // intrinsic call inserted
5 5 return float4x2(

6 void foo() { 6 (0.0f).xx, (0.0f).xx,

7 s = 's; // dead assignment 7 (0.0f).xx, (0.0f).xx);

8 3 8 }

9 9

10 [numthreads(1, 1, 1)] 10 [numthreads(1, 1, 1)]

11 void main() { 11 void main() {

12 foo(); 12 float4x2 e = foo();

13 } 13 }

(a) CVE-2024-3515 (b) CVE-2024-2885
Figure 7: HLSL shaders generated by TINT that trigger mem-
ory safety violations in pxc, a component of the Chrome
GPU process. (a) Optimizing the self-assignment of the static
struct in line 7 leads to a double-free. (b) The infinite loop
in line 2 invokes dead-code elimination, which operates on
freed IR objects.

Real-world Impact. Our whole testing setup is designed to iden-
tify bugs that are relevant in practice, i.e., that can be triggered by
attacker-controlled input. From an attacker’s point of view, trig-
gering this bug is as simple as embedding the fuzzer output (i.e., a
shader) into an HTML file and serving it to unsuspecting victims.
Any user visiting this website automatically processes this shader
via their browsers, triggering bugs in affected components. This
makes memory corruption bugs in the shader pipeline so security-
sensitive, as confirmed by the vendors. Even worse, Firefox does
not sandbox this highly privileged process, and Chrome only uses a
weaker sandbox than for other web content. For exemplary HTML
files containing malicious shaders, we refer to the bugs reported
in Table 2 that have been assigned a CVE. Technical details of all
bugs can be found in the issue tracker linked in the CVE entry.

6 DISCUSSION

The proposed approach of mutating shaders on both an IR layer
and an AST layer is suitable for fuzzing the WebGPU pipeline
end-to-end, i.e., from the initial parsing in the browser deep into
the transformation passes of back-end compilers. Our approach
was successful in uncovering a multitude of bugs and performs
favorably in other evaluation metrics. In the following section, we
discuss shortcomings of DARTHSHADER and potential future work.

Threats to Validity. Ensuring the accuracy of conclusions from
empirical experiments is essential. We focus on three key aspects to
validate our findings and describe assumptions and methodologies:

External Validity. One vital concern is whether the results from
our tested programs are transferable to other related targets, such
as compilers in GPU drivers and the Mesa project. While predicting
results for untested software is difficult, we assessed DARTHSHADER
across all three available translators from WGSL to OS-specific back-
ends and the back-end compiler bxc. To enhance the validity of our
approach, we will release our implementation under an open-source
license, allowing others to test and evaluate it.

Internal Validity. To improve the accuracy of our evaluation, we
conducted each experiment ten times across all targets to minimize
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systematic errors. Additionally, we measured branch coverage for
all fuzzing campaigns using the same Icov-instrumented binary, en-
suring consistent coverage data. However, the results from fuzzers
having access to an informed corpus lack comparability to fuzzers
without such seeds. For example, outcomes from DARTHSHADER
cannot be directly compared with those from WGSLGENERATOR. To
address this, we included an uninformed version of our approach,
DARTHSHADER--, in our experiments. Lastly, we used the same seed
files for all informed fuzzers to maintain comparable results.

Construct Validity. A primary concern about validity is ensuring
that an evaluation truly measures what it is intended to. Directly
comparing the concepts of different fuzzers is impossible, as we can
only evaluate tools that embody their respective design. This makes
a fair evaluation of concepts challenging, because outcomes are
heavily affected by unrelated elements, like algorithmic optimiza-
tions and fine-tuned parameters [42]. For example, the throughput
of WGSLGENERATOR is less than 1 samples per second, compared
to more than 100 for REGEXFUZZER. This difference influences the
branch coverage achieved on a SUT, potentially biasing evalua-
tion results towards performance-optimized fuzzers. By examining
additional metrics like the semantic correctness rate, which is inde-
pendent of throughput, we provide a less distorted picture. Further-
more, we performed an ablation study of our implementation that
allows the attribution of differences in coverage to contributing
design factors, as opposed to mere implementation details.

Seeds. Our method interleaves shader generation and mutations
and is the first WGSL fuzzer reaching high branch coverage with-
out pre-existing informed seeds. Still, our evaluation in Section 5.3
shows that using informed seeds enhances our tool’s ability to
explore target applications. Improving branch coverage with an
informed seed corpus suggests that our technique for generating
and mutating samples has room for improvement. We can identify
where enhancements could significantly increase coverage by ana-
lyzing the coverage differences between DARTHSHADER-- and the
informed seed corpus.

Back-ends and GPU Drivers. We are actively testing the transla-
tion capabilities of all three major browsers and the DirectX system,
the latter being specific to Microsoft Windows. However, there is
still a need for exploring additional systems and compilation phases.
For instance, the Mesa 3D Graphics Library on Linux is responsible
for converting SPIR-V code generated by browsers into a format
specific to the available GPU. Mesa does not expose an interface suit-
able for fuzzing SPIR-V shader translation; implementing such an
interface would enable testing of a wider range of back-end shader
compilers. On macOS, the back-end component compiling Metal
shaders (analog to pxc for HLSL) is not open-source. Therefore,
neither our coverage instrumentation nor ASAN instrumentation
is directly applicable. We leave the integration of the component
with a binary-only fuzzer as future work.

Our testing efforts are focused solely on components outside
the kernel, i.e., userland components. Nonetheless, a portion of the
GPU processing occurs within the kernel. For example, DirectX
communicates with the kernel using a version of LLVM 3.7 bitcode,
which the GPU’s device driver compiles further to an internal ISA.
Hardening the interface between untrusted shaders passed from
user-mode to privileged components via fuzzing improves overall
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system security. Resetting device drivers and the operating system
in between fuzzing inputs poses a significant challenge, to which
snapshot fuzzing [45] presents a viable solution.

Differential Testing. The front-end translators NAGA, WGsLc, and
TINT all adhere to the WebGPU Shader Language specification. As
a result, they are designed to consistently accept a uniform set of
valid input shaders and reject invalid ones. Should discrepancies
arise among these shader translators, they often indicate a misin-
terpretation of the WGSL specification by one of the translators or
a potential ambiguity within the specification itself.

The methodology for differential testing of shader compilers of-
fers further room for advancement. A single compute shader should
yield identical computational results across all implementations
once executed by OS-specific back-ends. This approach ensures a
high level of consistency in shader execution, which benefits the
development of cross-platform graphics applications.

Retrofitting Memory Safety. The back-end compiler pxc opti-
mizes shader programs with complex analyses and code transfor-
mations. This complexity, along with the fact that the component
has not been sufficiently hardened against adversarial inputs, con-
tinues to pose a security threat. Converting the C/C++ code to
WebAssembly [22, 38] could allow for fine-grained sandboxing of
DXC, reducing the impact of bugs.

7 RELATED WORK

In this work, we have introduced DARTHSHADER, a fuzzer highly
effective in uncovering security bugs in shaders. However, we are
not the first to stress-test WebGPU or the graphics stack. Tools
similar to our work include REGEXFUZZER [17] and ASTFUZZER [17],
two coverage-guided fuzzers for WGSL. Both of these tools are
tailored specifically to TINT and do not support other SUTs. The
performance of these two approaches heavily relies on the quality
of their seed corpus, in particular these tool require an informed
corpus. In contrast to DARTHSHADER, neither of these two tools
includes mutations on an IR layer. As a result, their ability to mutate
aggregate data types, control flow, and complex statements is either
limited in scope or completely absent.

WGSLSMITH [35] and WGSLGENERATOR [3] are domain-specific
tools to generate WGSL code. These tools draw inspiration from
Csmith [57], a well-known method also adapted for testing other
graphics components such as CUDA [27]. Unlike approaches involv-
ing mutations, WGSLSMITH and WGSLGENERATOR rely solely on code
generation. This implies that they do not utilize a pre-existing seed
corpus to improve output quality. As demonstrated in Figure 4, this
generational approach results in less comprehensive branch cover-
age. Furthermore, as Table 1 illustrates, most of the code samples
produced by these tools are ultimately rejected by their intended
targets.

Outside the scope of WebGPU, GraphicsFuzz [49], including
its components GL-Fuzz [18] and spirv-fuzz [19], is designed for
metamorphic testing to identify rendering bugs in graphic shader
compilers. Unlike DARTHSHADER, which targets memory safety
violations in WGSL shaders, GraphicsFuzz specifically examines
inconsistencies across different metamorphic variants [12, 31, 46]
of SPIR-V and GLSL shaders.
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In an even broader perspective, grammar fuzzing [7, 48] is used to
find bugs by generating structured inputs based on grammar rules. It
involves creating test cases that adhere to the syntax and semantics
of the targeted system, often using context-free grammars. While
conceptually applicable to WGSL, there are currently no grammar
fuzzers specifically targeting WGSL. Another interesting approach
to test the shader compilation pipeline could involve differential
testing [10, 49].

Lastly, the security of the graphics stack is broader than WGSL
shader compilation. Web-exposed APIs for resource management
have been tested in the context of WebGL [40] and the entire scope
of the browser [16, 26]. Even broader, related work has tested other
parts of the browser, including the DOM [56, 58, 59] or security poli-
cies [28, 47]. While all parts of the browser deserve close scrutiny,
bugs found in these components are often mitigated by browser
hardening mechanisms, such as the sandbox.

8 CONCLUSION

In this paper, we presented the design and implementation of
DARTHSHADER, a comprehensive fuzzing framework for the Web-
GPU shader language. We proposed the idea of fuzzing WGSL on
two abstraction levels, namely on an IR layer and an AST layer.
The mutations on both abstraction layers complement each other,
as each of them can transform inputs in a manner the other one
cannot. For example, while the IR layer is suitable for mutating and
generating additional types, it cannot produce ASTs that violate the
specification. On the other hand, the AST layer allows transforma-
tions that stress the parser. Consequently, the synergy of the two
mutation layers allows thorough testing of target applications. In
our evaluation, DARTHSHADER outperforms domain-specific fuzzers
in terms of code coverage, as well as performing favorably in terms
of semantic correctness rate. Furthermore, our approach shows its
real-world impact by identifying 39 bugs in components exposed
via the Internet, with 15 CVEs assigned so far.
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A NAGA COVERAGE AND ABLATION STUDY

NAGA
S ' . . ' : .
25000 4 =
/x”"
x
20000 4
@
()
g
150001
]
z O—O—0——————0—
S 100004
. —+— DARTHSHADER
—#— DARTHSHADER--
50004 —e— WGSLSMITH
—¢— WGSLGENERATOR
04— T T T T T T
0 4 8 12 16 20 24

Figure 8: We measure line coverage for NAGa, as it is Rust-based, making branch coverage a suboptimal metric. For a more
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(b) NAGA line coverage ablation study.

in-depth explanation for using line coverage over branch coverage, refer to Section 5.3.
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