Protocol-Aware Firmware Rehosting for Effective Fuzzing of
Embedded Network Stacks

Moritz Bley
moritz.bley@cispa.de
CISPA Helmholtz Center for
Information Security
Saarbriicken, Germany

Moritz Schloegel
moritz.schloegel@asu.edu
Arizona State University
Tempe, AZ, USA

Abstract

One of the biggest attack surfaces of embedded systems is their net-
work interfaces, which enable communication with other devices.
Unlike their general-purpose counterparts, embedded systems are
designed for specialized use cases, resulting in unique and diverse
communication stacks. Unfortunately, current approaches for evalu-
ating the security of these embedded network stacks require manual
effort or access to hardware, and they generally focus only on small
parts of the embedded system. A promising alternative is firmware
rehosting, which enables fuzz testing of the entire firmware by
generically emulating the physical hardware. However, existing
rehosting methods often struggle to meaningfully explore network
stacks due to their complex, multi-layered input formats. This limits
their ability to uncover deeply nested software faults.

To address this problem, we introduce a novel method to automat-
ically detect and handle the use of network protocols in firmware
called PEmu. By automatically deducing the available network pro-
tocols, PEMU can transparently generate valid network packets that
encapsulate fuzzing data, allowing the fuzzing input to flow directly
into deeper layers of the firmware logic. Our approach thus enables
a deeper, more targeted, and layer-by-layer analysis of firmware
components that were previously difficult or impossible to test. Our
evaluation demonstrates that PEMU consistently improves the code
coverage of three existing rehosting tools for embedded network
stacks. Furthermore, our fuzzer rediscovered several known vul-
nerabilities and identified five previously unknown software faults,
highlighting its effectiveness in uncovering deeply nested bugs in
network-exposed code.

CCS Concepts

« Security and privacy — Systems security; Software and ap-
plication security; - Computer systems organization — Em-
bedded systems.

Keywords

Firmware Fuzzing, Rehosting, Network Fuzzing, Software Security

Tobias Scharnowski
tobias.scharnowski@cispa.de
CISPA Helmbholtz Center for

Information Security

Saarbriicken, Germany

Simon Worner
simon.woerner@cispa.de
CISPA Helmbholtz Center for
Information Security
Saarbriicken, Germany

Thorsten Holz
thorsten.holz@mpi-sp.org

Max Planck Institute for Security and

Privacy
Bochum, Germany

1 Introduction

Embedded devices are specialized computers that tightly integrate
with the hardware they control. Examples include medical devices,
industrial control systems, and Internet of Things (IoT) components.
These devices are either powered by lightweight operating systems
(OSes) or operate without an OS (referred to as “bare metal”). Conse-
quently, the software running on these systems, known as firmware,
cannot rely on conventional OS abstractions but must directly man-
age its interactions with hardware. Furthermore, embedded devices
often expose network-related applications through Embedded Net-
work Stacks (ENS) to allow for interconnectivity with other devices.
The combination of missing OS abstractions, limited computation
resources, and the large attack surface has made embedded systems
challenging to secure, especially via automated techniques.

Recent research has turned towards firmware rehosting to achieve
scalable and effective testing of embedded firmware. Generally
speaking, rehosting runs firmware within an emulator instead of
its original, resource-constrained hardware environment [31, 48].
Using a fuzzer to mimic peripheral data allows firmware to be
executed on powerful hosts without relying on the physical micro-
controller [13, 19, 39, 41, 43, 49].

However, testing firmware that uses networking via rehosting-
based fuzzing still faces two substantial challenges: First, while AFL-
like mutations [50] are effective in testing lightly structured formats,
current solutions are ill-equipped to progress past the initial lay-
ers of embedded network stacks. Consequently, for firmware that
utilizes a complex ENS, current rehosting-based firmware fuzzers
are stuck, as they fail to generate the highly complex structure of
network packets. This forces them to re-test only the low-level
logic that verifies the packet structure. In particular, they fail to
test higher network layers or the application-level logic built on
top of the ENS. Second, while network protocol fuzzers exist in
the general-purpose domain [2, 4, 35], their applicability to em-
bedded firmware is limited. For example, AFLNET [35] relies on
existing (target-specific) traffic captures for testing. While such a
capture is easy to generate on a general-purpose system, this is
not the case in the embedded domain. Aside from various practical
challenges, the requirement of a hardware setup to bootstrap the
testing process results in a tedious manual process. This effectively
negates the scalability effects that rehosting provides. Similarly,

IEEE 802.15.4 MAC Layer (PAN ID, MAC Address)
6LoWPAN Adaption Layer (Fragmentation, Compression)
IPv6 (IPv6 Address)
TCP (SQN, ACK, ...) UDP (Checksum, ...)
[Applicati \ [Applicati \

Figure 1: Example network layers involved in a firmware
that exposes applications through a typical 6LoWPAN stack.

EMNETTEST [2] also relies on a set of seed network packets, for
which it systematically generates variants to test the known layers
of an ENS. Although more broadly applicable to embedded network
stacks, EMNETTEST requires source code and knowledge about the
target to specify network metadata. Both are rarely available in
practice. Furthermore, it does not provide fuzz testing capabilities
for the firmware application logic beyond the transport layer.

Based on these observations, we identify two properties of an op-
timal rehosting solution for effective fuzzing of ENSs: First, neither
a physical hardware setup nor target-specific configurations should
be required, as both introduce manual effort. More specifically, this
means that inputs need to be bootstrapped without any seeds, and any
network protocols need to be automatically inferred from firmware
behavior. Second, the desired solution should allow the fuzzer to
test not only common network layers, but also the application logic
that is specific to each firmware.

We need to solve different challenges to achieve such automation
and testing flexibility. First, we must generate well-formed mes-
sages for embedded network protocols. Figure 1 shows a typical
ENS that exposes IPv6-based communication through 6LoOWPAN
over IEEE 802.15.4 radio frames. The firmware expects to receive
low-level radio frames, which it decompresses and re-assembles
into IPv6 packets. To enable a fuzzer to test the application logic
of the firmware under test, we need to wrap application-layer data
into a series of low-level radio frames that successfully traverse
all network layers and deliver the fuzzing payload to the applica-
tion logic. This is in contrast to typical general-purpose network
fuzzing scenarios, where the operating system abstracts away most
network layers via network sockets.. Given that we do not have any
information on the ENS of the firmware, we need a mechanism that
allows us to automatically discover the tree of different network
protocols via which the ENS expects to communicate. Addition-
ally, we also need to infer the static device identifiers by which the
firmware expects to be addressed, such as the PAN ID, as well as
the MAC and IPv6 addresses. After deriving this information, we
can focus on generating valid network packets that encapsulate
fuzzing inputs. However, to fully explore the ENS, the fuzzer also
needs to be able to account for the dynamic state of protocols. For
example, Figure 2 displays how the DHCPv6 protocol relies on a
defined sequence of messages, including DHCPvV6 solicit, advertise,
request, and reply packets that must occur in a specific order. Only
if the rehosting environment correctly handles these exchanges
can the fuzzer fully explore the protocol implementation and any
application built on top of it.

To this end, we design and implement PEMU, a generic frame-
work that extends existing rehosting platforms to handle network

Client Server

DHCPv6 ‘

Solicit DHCPv6

| Advertise

DHCPv6 Q} |

Request DHCPYG (/)

Repl
o TCP s

SYN

Figure 2: Exchange of context-sensitive messages involved in
an IPv6 address retrieval via DHCPv6 between a client (left)
and server (right).

communications. At a high level, our approach provides a self-
configuring virtual network interface that connects a network-
unaware fuzzer and the firmware under test. PEMU encapsulates
raw fuzzing input into valid network packets, enabling fuzzing
input to reach deeper into network-related code, all the way into
the application logic. To infer the network protocols the firmware
under test uses, PEMU performs active probing. We apply two tech-
niques to monitor how the firmware responds to different types
of probing packets. First, in contrast to traditional rehosting sys-
tems that largely ignore firmware output, we parse the outgoing
low-level frames of the firmware to detect available network pro-
tocols. Second, we evaluate the firmware coverage with different
types of probing packets. This allows us to detect which types of
packets trigger unique coverage in the firmware, i.e., which types
of packets its ENS is sensitive to. By interleaving fuzzing and active
probing based on previously detected network layers, PEmu itera-
tively recovers the tree of network protocols that the ENS uses. By
encapsulating fuzzing inputs according to the identified protocol
tree, PEMU allows the fuzzer to test the implementation of different
layers of the ENS, as well as the application logic of the firmware.
To demonstrate the versatility and applicability of our approach,
we integrate PEMU with three popular rehosting-based firmware
fuzzers: Fuzzware [39], HOEDUR [41], and SEMU [54]. We then eval-
uate PEMU’s performance on a firmware sample set that covers a
wide variety of network protocols. Our results show that PEMU con-
sistently improves code coverage for the tested firmware samples.
More specifically, our approach increases the average basic block
coverage by 40.7% when used together with FuzzwARg, by 39.2%
with HOEDUR, and by 8.5% with SEmMu. Moreover, we evaluated
PeEMU against EMNETTEST, the only other technique specifically
targeting ENS testing. Using EMNETTEST’s dataset of 12 real-world
vulnerabilities, we show that PEMU not only successfully rediscov-
ered all of them, but PEMU also identified three additional bugs
missed by EMNETTEsT. Combined with two further novel bugs—
one of them in the SEmU dataset—PEMU managed to discover five
new bugs in network-exposed code throughout our evaluation. We
are in the process of disclosing all of our findings to the affected
vendors in a coordinated way and one of them has been fixed.
Contributions. We provide the following three key contributions:
e We present a new approach for dynamically detecting the
use of network protocols in embedded firmware. Based on
the identified network interactions, we propose a method to
encapsulate fuzzing data in valid network packets based on a

virtual network to effectively test different layers of network
interactions.

e To demonstrate the general applicability of our method across
different fuzzing frameworks, we integrate our approach into
three frameworks: FuzzwARE, HOEDUR, and SEmU.

e In a comprehensive ablation study, we show that PEMU sig-
nificantly improves code coverage across all application sce-
narios and outperforms existing techniques on vulnerability
benchmarks by finding five previously unknown bugs.

To foster research on this topic, we publish the source code, our
sample data set, and other research artifacts at https://github.com/
MPI-SysSec/pemu.

2 Background

We first provide a brief overview of firmware and the specific chal-
lenges involved in analyzing the security of their network stacks.

2.1 Firmware in Embedded Systems

Embedded systems tightly integrate hardware and software to per-
form specific tasks within devices ranging from IoT gadgets to in-
dustrial systems [18, 34]. Unlike general-purpose computers, they
typically contain a microcontroller unit (MCU). This self-contained
system typically includes a processor, memory, and various on-
chip peripherals such as Serial Peripheral Interface (SPI), Universal
Asynchronous Receiver-Transmitter (UART), or Direct Memory
Access (DMA). These peripherals allow connectivity to off-chip
components like Ethernet controllers, Bluetooth modules, wireless
modems, or LED screens. The wide range of customized processors
and peripherals, both on-chip and off-chip, adds to the complexity
and diversity of these systems.

Firmware, the software controlling an embedded system, is usu-
ally built on either a minimal embedded operating system (EOS) or
directly on the hardware (referred to as “bare metal”), resulting in
fewer abstraction layers than in general-purpose software. Further-
more, embedded applications are strongly integrated with either the
EOS or the system’s underlying hardware. Firmware components,
such as network stacks and libraries, are specifically tailored to the
hardware and closely integrated, which makes standard security
analyses challenging and calls for customized techniques.

2.2 Linux-based Fuzzing

Fuzzing is a well-established security testing technique that gener-
ates semi-random inputs to identify unexpected or crash-inducing
behavior in a system [14, 27]. However, fuzzing embedded systems
on real hardware is often impractical due to poor scalability and
limited observability [31]. For Linux-based, type 1 [31] devices like
routers or IP cameras, previous research has focused on fuzzing
user-space applications. This is either done by emulating the target
application in QEMU user-mode [45] or on top of a customized
kernel in QEMU system-mode [7, 21]. In both cases, the primary
focus of these approaches is setting up the target’s Linux-related
environment, such as the file system or network interfaces. To this
end, they use well-known kernel interfaces, like system calls, to
collect data such as required files and IP addresses.

General-Purpose Fuzzing

recv(sock, ...)

Firmware Fuzzing

read_frame(device)

IEEES802.15.4 (PAN ID, MAC Address)
6LoWPAN (Fr Compression)
IPv6 (IP address)

TCP (Checksum, SQN, ACK)

HTTP (Text-based)

Figure 3: Comparison of the input formats required for
testing an HTTP server implementation between general-
purpose fuzzing and firmware fuzzing: given the lack of ab-
stractions provided by an OS, a firmware fuzzer needs to deal
with all individual network layers.

HTTP (Text-based)

2.3 Rehosting-based Fuzzing

In contrast, applications running on tightly integrated type 2 and
type 3 EOSs [31] cannot be easily emulated by these Linux-based
approaches. This is because these EOSs do not provide the same
high-level abstractions that Linux provides to mask the underlying
hardware complexity. Instead, firmware rehosting addresses the chal-
lenge of embedded fuzzing by emulating bare-metal or EOS-based
firmware on commodity hardware, enabling the use of dynamic
analysis techniques that are otherwise unfeasible on embedded
devices. By decoupling the firmware from specific hardware depen-
dencies, rehosting provides a more flexible and scalable platform
for security analysis. Recent approaches have further reduced the
need for exact peripheral emulation by using generic abstraction
models [10], automatic peripheral interaction modeling [13, 39],
and customized input formats [9, 41]. These techniques support
effective fuzzing by providing raw input to the firmware through
modeled peripherals.

2.4 Fuzzing Embedded Network Stacks

While rehosting-based fuzzing enables broad firmware testing, it
still falls short when dealing with more complex components, espe-
cially network stacks and the applications running on top of them.
Network stacks consist of multiple interdependent layers, and data
is passed to higher layers using complex formats and specific se-
quences. In general-purpose systems, user-space fuzzing of network
services benefits from OS-level abstractions, e.g., a fuzzer can inject
test cases directly into a program via system calls like recv, with-
out needing to construct the underlying network protocol layers.
In contrast, embedded firmware fuzzing lacks such abstractions.
As illustrated in Figure 3, this lack of abstraction makes fuzzing
far more complex. Instead of directly testing the application layer,
the fuzzer must provide input that satisfies all underlying network
layers (i.e., from IEEE 802.15.4 to 6LoWPAN and IPv6 up to TCP and
the actual HTTP payload). This means the fuzzer must generate
inputs that satisfy the expectations of every layer (from the data
link layer up to the application) without any OS assistance. In con-
trast, Linux-based fuzzing uses readily available network interfaces
provided by the Linux kernel to send application data directly to
the target process [7, 17, 21].

As current state-of-the-art fuzzers and rehosting frameworks
offer no notion of message encapsulation or internal state, they
are ill-equipped to test such complex components. A fuzzer with a

https://github.com/MPI-SysSec/pemu
https://github.com/MPI-SysSec/pemu

PEMU
[[Fuzzing Data

- Fuzzer

Emulator

Y
\L lati a Packet
ncapsulation
— EEEN

A

: y
State __Response : ,—ﬁ
Extractor | LLLLI| - || Firmware

Rehosting platform

Network

Figure 4: High-Level Overview of PEMU’s architecture

focus on bitflips is unlikely to craft input that resembles a nested
packet valid on different layers, each with its unique constraints.
At the same time, existing fuzzers have no notion of statefulness
between messages, nor do they explicitly account for values that
must be maintained across individual messages.

3 Design

While fuzzing network applications is well studied for general-
purpose systems, embedded systems pose unique challenges that
remain largely unaddressed. State-of-the-art firmware fuzzers typ-
ically provide only raw data to the network stack, which fails to
match the complex syntax and semantics of network protocols.
As a result, the network stack often discards packets generated
during fuzzing before they can reach deeper code sections, includ-
ing custom application logic. This limits the fuzzer’s effectiveness
and leads to repetitive, ineffective attempts to bypass lower-layer
constraints such as checksums, static addresses, or incrementing
values. Existing firmware fuzzers do not effectively address this
limitation. Using captured network traffic as seeds, as AFLNET does,
has several drawbacks. Rehosting is supposed to work without
physical hardware, so relying on real traffic undermines this bene-
fit. Additionally, mutating such seeds regularly breaks checksums
or protocol structures. Fixing this either requires source code ac-
cess (which rehosting avoids) or checksum recalculation after every
mutation, making it rather expensive.

To overcome these limitations, we present the design of PEMU, a
virtual network that delivers realistic, syntactically valid packets
to embedded firmware under test. Through a transparent and self-
configuring encapsulation mechanism, PEmu allows the rehosting
platform to request and deliver well-formed network packets just
in time. PEMU also analyzes firmware-transmitted packets, from
which it can extract important network values, such as addresses
and sequence numbers. By enforcing both syntactic and semantic
correctness at each network layer, PEMU enables fuzzing at the
application layer, bypassing lower-layer constraints like checksum
and header validation. Based on this foundation, we introduce two
automated analysis methods that identify protocols and protocol-
specific values in the firmware without requiring prior knowledge
or manual intervention.

3.1 High-Level Overview

From the firmware’s perspective, PEMU dynamically creates a vir-
tual network that facilitates valid network interactions between
the firmware and a fuzzing-based rehosting platform. To achieve
this, PEMU consists of multiple components (see Figure 4) that inter-
act with each other. When the rehosting platform detects that the
firmware is in a state where it can receive a packet, the encapsula-
tion module generates such a packet by using raw fuzzing input
from the rehosting platform’s fuzzing module. It then encapsulates
this input into a valid network packet based on the current (ini-
tially empty) network configuration (@). Guided by the fuzzer, the
encapsulation module adjusts how deeply it encapsulates the input,
allowing targeted testing of different layers in the network stack.
Once the firmware transmits low-level frames, PEMU parses these
frames to extract information about the current protocol state, e.g.,
source and destination addresses (). This state is later used by the
encapsulation module to encapsulate network packets correctly.
The network is initialized with an empty configuration to facili-
tate automated end-to-end testing. Through iterative analysis steps,
PEmMU dynamically derives the protocol stack used by the firmware
by using protocol-specific probes and code coverage as feedback.
This probing process is repeated throughout the fuzzing campaign
to continuously refine the configuration as new behavior of the
firmware’s network stack is discovered (see Section 3.4.1).

3.2 Protocol-Aware Firmware Rehosting

We now discuss the main components of PEMU in detail and explain
how the encapsulation and extraction steps work.

3.2.1 Packet Encapsulation. Given the current network configura-
tion, the fuzzer can utilize the encapsulation module to encapsulate
raw input into realistic network packets. Varying the depth of the
encapsulation in a fuzzer-driven manner allows PEMU to equally
test every layer of the network stack, unlike most existing general-
purpose network application fuzzers. By generating semantically
correct packets, the encapsulation module acts as a funnel that
enables the fuzzer to target specific firmware components within
the network stack dynamically.

The underlying insight is that all network packets follow a lay-
ered architecture: each protocol within a packet consists of a header
with metadata and a body. Only the body of the highest layer con-
tains the actual application data, while the body of each lower layer
encapsulates the layer immediately above it. Header fields may
contain static values (e.g., version = 4 in IPv4), references to
another layer (e.g., EtherType = 8 in Ethernet when the next layer
is IPv4), or dynamically computed fields such as checksums. We
supply the encapsulation module with a set of protocol grammars
to translate these constraints into raw network packets. We use the
official specifications to manually derive these grammars (which
is a one-time effort). Our grammar can depict complex constraints
like fragmentation, compression, checksums, or static values. These
protocol grammars allow the encapsulation module to create valid
packets that contain fuzzing input as the body of a given encapsu-
lating protocol. To enable broad testing of each protocol layer, we
designed the grammar to use fuzzing input for every header field,
which is not bound by strict semantic requirements (e.g., addresses
and checksums).

The encapsulation module often has to send multiple low-level
frames, for instance, due to fragmentation or to perform a hand-
shake before any data reaches the firmware’s application layer.
Hence, in addition to correctly assembling individual packets, the
encapsulation module must maintain state information across a se-
quence of packets, such as sequence numbers, TCP SYN/SYN-ACK
pairs, or fragmentation metadata. This highlights one of the core
insights of PEMu: While the firmware might successfully parse a
single network packet consisting of only random data by chance,
the likelihood of two subsequent randomly generated packets be-
ing accepted as a valid application-level input is very low. As a
result, current firmware fuzzers are often unable to progress up
to the application layer of firmware, as they lack an understand-
ing of the underlying protocol semantics. Furthermore, based on
fuzzing input, the encapsulation module can mutate individual
header fields. Introducing mutations into the packet allows us to
test the boundaries of the network stack. This approach is moti-
vated by the findings of Amusuo et al., who found that 95% of
vulnerabilities in embedded network stacks depend on only one or
two incorrect header fields [2].

3.2.2 State Extraction. To improve the encapsulation process, we
analyze packets that are sent by the firmware to derive values related
to the network state. While existing rehosting platforms largely ig-
nore the firmware output, PEMU actively uses these output packets
to inform the input encapsulation performed by the encapsulation
module. There are two reasons for firmware network interactions
that we aim to capture protocol state from, unsolicited and solicited
packets. Unsolicited packets are packets the firmware network stack
sends without any external trigger. The sending occurs either dur-
ing the firmware’s initial setup process or periodically. In the case
of a TCP/IP stack, examples are ARP packets to identify the gate-
way’s MAC address, DHCP packets to request an IP address, and
ICMP pings to verify connectivity. The firmware includes header
metadata of all involved protocols in all cases, e.g., an ARP packet
contains the MAC address as well as the sender’s IP address. In
contrast, solicited packets are prompted in response to a packet the
firmware received. Examples include the firmware sending a TCP
SYN-ACK segment with a sequence number in response to a TCP
SYN segment or requesting an IP address in response to a DHCP
offer packet.

Whenever the firmware sends a packet, the state extractor mod-
ule extracts the included protocol state values so they can be added
to the configuration of the virtual network accordingly. These val-
ues are then used when encapsulation fuzzing input, as described
in the previous section. This approach eliminates the guesswork
that a fuzzer would otherwise face when constructing sequences
of packets with valid metadata across multiple protocol layers.

3.3 Platform Independency

PEMU is designed to be independent of the underlying rehosting
platform, requiring only a minimal adapter for integration. This
adapter enables communication between the platform and PEmu,
while the platform itself remains responsible for deciding when to
request packets and where to deliver them. This intentional choice
allows PEMU to remain agnostic to the specific emulation context

and the methods used for input handling. Fundamentally, the plat-
form must provide PEMU only access to fuzzer-generated input (for
packet encapsulation). It can then leverage PEMU’s straightforward
API of two commands: get_packet and send_packet. To show-
case our design’s generic applicability, we implement it on top of
three different rehosting platforms (see Section 4).

3.4 Pemu-based Network Traffic Analysis

Based on PEMU’s encapsulation and state extraction, we design two
analysis methods that enable the underlying rehosting platform
to perform an end-to-end analysis of a target without requiring
any manual effort or previous knowledge to extract a network
configuration. Furthermore, the gained information can be used to
broaden PEmMU’s knowledge of the firmware’s network stack. These
passes are designed to be run while the fuzzer is paused to ensure
a coherent configuration.

3.4.1 Packet Sequence Extraction. For large-scale analyses, avoid-
ing manually reverse-engineering individual samples to extract
information on the type of network packets the firmware accepts is
desirable. Manual analysis is not only time-consuming and labor-
intensive but also error-prone and difficult to scale across large
and diverse firmware samples. Hence, we propose an end-to-end
approach that can extract this information without any manual in-
volvement. We introduce a technique called coverage-based probing
to achieve this goal. The underlying idea is the following: We ex-
pect the firmware implementation of a given network layer to react
distinctly to well-formed input, i.e., a well-formed input triggers
unique coverage when compared to a malformed input. By gener-
ating a set of well-formed inputs for each network layer candidate,
we can observe which packets elicit a distinct reaction from the
firmware. The packets that trigger such distinct reactions likely
represent the network protocols used by the firmware under test.

There are several ways to measure these reactions based on
firmware coverage. The naive approach of only selecting the packet
types that cover the highest number of basic blocks has a significant
drawback: The error-handling routine, which is likely triggered
by a malformed input, produces coverage. We even found that the
number of basic blocks that are part of error handling can be higher
than the amount of “regular” coverage induced by a correct packet.
To address this issue, we use the metric of uniquely covered basic
blocks instead of the total number of basic blocks covered. This
approach is based on the insight that well-formed packets of the
expected type will progress further into the network stack, while
unexpected packets will eventually trigger some common error-
handling routine. Hence, valid packet types will likely cover the
highest number of unique basic blocks.

A challenging aspect of automatically identifying the network
configuration is that protocols in the network stack rely on other
protocols, even protocols on the same topological layer. More specif-
ically, often, before the firmware can receive a packet containing a
given protocol, separate packets of an entirely different protocol
may have to be exchanged first. An example of this is ARP and IPv4,
where ARP is used to identify the MAC address of a gateway so that
the firmware can further communicate with it via IPv4. Similarly,
a firmware that implements a web server via TCP may need to

Frame Frame
—) } —
Ethernet . BLE Ethernet . BLE
— | — 4 = [
ARP IPv4 ARP IPv4
— — — —
UDP TCP UDP TCP
— ! — 5 !
DHCP SNMP MQTT DHCP SNMP MQTT

(a) Initial network configuration (b) Iteration 1: ARP detected

Frame Frame
Ethernet .. BLE Ethernet .. BLE
ARP IPv4 ARP IPv4
— L
UDP TCP UDP TCP
— = | T |
DHCP SNMP MQTT DHCP SNMP MQTT

(c) Iteration 2: DHCP detected (d) Iteration 3: MQTT detected
Figure 5: Exemplary space of available network protocols
and their nesting, from the point of view of PEmU (newly
detected, | | previously detected). PEMU successively detects
more and more protocol layers and adds them to the detected
network configuration at runtime.

dynamically configure its IPv4 address via DHCP, which relies on
UDP, before it can accept TCP segments.

Building on these insights, we devise an iterative approach for
detecting the entire stack of network protocols used by the firmware.
For a given state of fuzzing progress, PEMU detects the next network
layer currently reachable. This newly identified layer is then added
to the existing network configuration, i.e., the set of protocol layers
currently assumed to be used by the firmware. This configuration
is usually empty at the beginning of the fuzzing campaign. By
incrementally updating the network configuration, our approach
allows the fuzzing to progress deeper into the network stack.

Figure 5 shows how the configuration is updated over three it-
erations for an example firmware that exposes an MQTT server.
Initially, no protocol layers have been identified (Figure 5a). In this
initial configuration, fuzzing input is passed into raw frames. This
state is identical to how existing rehosting platforms pass fuzzing
input without PEMU’s virtual network. The example firmware starts
resolving the MAC address of its gateway. To this end, the ENS
implementation sends ARP requests, expecting an ARP response. In
this state, a probe packet containing a valid ARP response triggers
the network stack to store the MAC address of its gateway success-
fully. This event leads to unique code coverage compared to other
invalid probe requests (which are discarded by the corresponding
layers). Consequently, PEMU adds the Ethernet and ARP protocols
to its network configuration, resulting in Iteration 1 (see Figure 5b).
Similarly, once the example firmware requests an IPv4 address via
DHCP, a probe request that contains a valid DHCP packet will
generate unique coverage further up the firmware’s network stack.
This progression leads to Iteration 2 (Figure 5c). Finally, after the

IPv4 address is assigned, the firmware will start listening for in-
coming TCP connections to serve MQTT requests. This behavior
can again be detected by probe requests, leading to Iteration 3 of
the configuration (Figure 5d).

An appealing property of this iterative, incremental approach
is its robustness: Even in the unlikely case that a probe request
mistakenly adds an unused protocol layer into the detected net-
work configuration, this protocol is given to the fuzzer as an option
for encapsulation. As the fuzzer decides up to which layer to en-
capsulate, it will not be forced to send a wrong type of network
packet continuously. In fact, coverage feedback will lead the fuzzer
to deprioritize wrong choices.

3.4.2 Parsing-Based Analysis. The concept of parsing-based analy-
sis refers to the comprehensive analysis of the results of the state
extraction provided by PEmu. First, all extracted values are collected
and analyzed. When multiple options exist for a header field, the
most likely one is chosen and integrated into PEMU’s configuration
for the next fuzzing run. This iterative and self-correcting approach
significantly improves the quality of generated network packets,
while reducing the required fuzzing input.

4 Implementation

To evaluate our approach, we implemented a prototype of our
design. Additionally, we integrated our approach with three state-
of-the-art rehosting platforms: FuzzwAre [39], HOEDUR [41], and
SEmu [54]. We release PEMU as well as our patches to these plat-
forms at https://github.com/MPI-SysSec/pemu.

4.1 Implementation Aspects of PEMU

PEMU’s virtual network exposes two core interfaces: one for receiv-
ing packets from the network and one for sending packets to the
network. We implemented PEmU in Python, which is supported by
most rehosting platforms. The implementation consists of about
3,600 lines of Python code.

Encapsulation Module. The virtual network provides a dedi-
cated module, the encapsulation module, which monitors the cur-
rent network state and assembles packets as needed. The encapsula-
tion module is initialized with a predefined list of network packets
(i.e., the network configuration). Upon each request from the rehost-
ing platform, it processes the list and assembles the packet at the
current index before advancing to the next. Protocol semantics and
syntax are defined in YAML configuration files and are derived from
official specifications. Header fields are classified into the following
categories:

Static values that are specified directly in the configuration.

Length values and the scope they refer to.

Fields that reference higher layers

Fields that link handler functions for complex calculations,

like checksums.

o State-related values that require updates, such as flags and
sequence numbers.

e Remaining fields that can be populated with fuzzing data.

Like an actual network stack, the encapsulation module assem-
bles packets layer by layer, starting from the highest to the lowest

https://github.com/MPI-SysSec/pemu

protocol layer. Additionally, the virtual network supports fuzzer-
guided fault injection, allowing it to introduce mutations into pack-
ets to test edge cases and error-handling logic. These malformed
packets can help uncover vulnerabilities in lower-layer parsers that
might be missed with well-formed inputs alone. Alongside our tool,
we publish YAML configuration files for 38 protocols.

State Extraction. The State Extraction module parses outgo-
ing packets according to their protocol specifications. The module
identifies and stores unknown protocol values (e.g., IP addresses,
IDs, and nonces) for later analysis. Complex header fields, such as
the Frame Control Field (FCF) in IEEE 802.15.4 or cases involving
fragmentation and compression, can be managed with custom han-
dler functions provided by the user. Adding handler functions is a
one-time effort when adding a new protocol.

4.2 PemuU-based Analysis

We also implemented two complementary analysis techniques that
enable end-to-end automation without manual intervention. These
analyses are performed after fuzzing is paused, and their results are
then integrated into the network configuration upon continuation.
This is done to prevent inconsistent configurations.

Analyzing Extracted State. During fuzzing, the virtual net-
work’s state extractor module inspects and extracts relevant in-
formation from packets transmitted by the firmware. This data is
accumulated and analyzed to refine and expand the network con-
figuration with new information on connection-specific values and
new network packet types, enhancing future fuzzing effectiveness.

Probing. Relying solely on state extraction to explore the net-
work state has limitations, particularly when there is no prior knowl-
edge of the protocol suite or when the firmware, based on its role
(e.g., client or server), remains idle without an external prompt.
We use an active probing approach to address this issue, as de-
tailed in Section 3.4.1. This method leverages heuristics to select
probes, or packet types, that are most likely to advance exploration
of the firmware’s network stack. To this end, the encapsulation
module supports a probe mode, where it generates packets with
randomized yet syntactically valid configurations based on the
current firmware state. All fuzzing bytes in the probe packets are
set to zero to ensure consistency across probing runs and avoid
non-deterministic behavior from random inputs. Only non-fuzzed
fields—such as those derived from static values, handlers, check-
sums, lengths, and pointers—remain unaltered, reducing the risk of
random bytes misleadingly mimicking unintended protocol fields.
This ensures, for example, that a randomized Ethernet MAC address
is not erroneously interpreted as an IEEE 802.15.4 frame.

Subsequently, the probing component places the encapsulation
module in the dedicated probe mode, extracts the gathered coverage,
and applies the heuristics to the collected basic block sets. After
running the probes, coverage data is collected, and heuristics are
applied to assess the firmware’s basic block responses. The probing
module includes a communication interface adaptable to different
rehosting platforms, ensuring precise extraction and interpretation
of coverage data.

Table 1: Categories of binary-only rehosting approaches

Category ‘ Platforms

Single-Stream | Fuzzware [39], AIM [12], P2IM [13], DICE [28]
Multi-Stream | Hoedur [41], Multifuzz [9]
Spec-based SEmu [54]

4.3 Integration with Existing Fuzzing Platforms

PEMU is designed to be platform-agnostic, leaving its integration,
configuration, and use to the fuzzing platform. First, we outline two
general methods for delivering network packets to network buffers
within rehosting platforms. Afterward, we describe our implemen-
tation of PEMU with three representative platforms—FuzzwARE,
HoEDUR, and SEMu—each illustrating a distinct approach to binary-
only rehosting and firmware fuzzing, as categorized in Table 1.

Integration Concepts. Rehosting platforms must support net-
work packet handling to enable PEMU to deliver packets to the
firmware. While some firmware applications receive packets via
serial interfaces like UART [37], most rely on DMA-enabled periph-
erals to transfer packets directly into a RAM buffer. Although recent
techniques can model simple DMA transfers [28], many network
peripherals use complex DMA mechanisms that current methods
do not support. Designing a generally applicable solution to this
problem is inherently orthogonal to our approach; therefore, to
handle it, we propose two integration approaches:

(1) Hook-Based Integration: Many platforms allow debugging
hooks at specific basic blocks. The emulator can inject pack-
ets into the correct buffer by placing a hook at the block
where packet data is first accessed. During the execution of
each hook, DMA control structures are checked to determine
packet insertion points. These hooks are implemented once
per MCU family. Identifying the hook placement is an effort
that needs to be taken once per HAL. For example, every
STM32 MCU built with STM32’s HAL accesses the received
data within the same function: HAL_ETH_ReadData.

Peripheral Emulation: A more robust approach is the man-
ual implementation of network peripherals based on MCU
specifications, where the peripheral handles all MMIO inter-
actions. This enables high-fidelity emulation and removes
the need for per-sample analysis, as the emulated peripheral
autonomously identifies when to insert new packets. This
approach’s feasibility depends on the platform’s architecture.

—
S
~

In the following, we describe how we integrated our approach
with three different fuzzing frameworks.

Fuzzware. FuzzwARE [39] uses symbolic execution to model
MMIO accesses, optimizing fuzzing input usage. Based on Uni-
corn [47], FuzzwARE supports both integration methods. We man-
ually implemented network peripherals for four MCUs, with each
implementation averaging 435 lines of Python code.

Hoedur. HOEDUR [41] is a multi-stream fuzzer that improves the
MMIO modeling introduced by FuzzwARrE by introducing distinct
input streams per MMIO channel for targeted mutation. Built with
Rust on QEMU [5], integration with PEMU required cross-language

support. We implemented hooks for packet reception and trans-
mission for four MCUs, which detect network buffer addresses and
inject packets as needed while HOEDUR manages other MMIO func-
tions. On average, each MCU implementation requires 184 lines of
Rust code. In total, the integration required 823 lines of code.

SEmu. SEmu [54] diverges from the other two platforms by us-
ing natural language processing to extract condition-action rules
from MCU specifications, guiding MMIO emulation with high fi-
delity. Although primarily MMIO-focused, SEmU includes an Ether-
net peripheral for one supported MCU. We integrated PEMU using
this peripheral, requiring only 34 lines of Python code.

5 Evaluation

To evaluate the effectiveness of PEmU, we conducted several experi-
ments to determine whether and to what extent virtual networks can
improve embedded firmware fuzzing. To this end, we implemented
and tested PEMU across the three different rehosting platforms.
Furthermore, we evaluate our approach against EMNETTEST [2], a
testing tool for embedded network stacks. We address the following
research questions in our evaluation:

e RQ1. Is PEmu applicable to multiple fuzzing platforms?

o RQ2. What are the benefits of network protocol-aware fuzzing,
and how can PEMU improve previous methods?

e RQ3 How does PEMU compare to other ENS testing ap-
proaches?

e RQ4. Can PEMU improve the detection of bugs in embedded
network stacks?

5.1 Setup

To account for the inherent randomness of the fuzzing process, we
run each fuzzing campaign five times and follow the best practices
for evaluating fuzzers by Klees et al. [23] and Schloegel et al. [42].
We plotted the median and the 95% confidence interval for the
results to account for any uncertainty.

Hardware Configuration. All our experiments use the same
hardware configuration: two AMD EPYC 9654 CPUs running at
3.707 Ghz (192 physical cores in total), 768 GB of RAM, and SSD
memory for storage.

Platforms and Fuzzers. We performed experiments across the
three different rehosting platforms FuzzwaRre, HOEDUR, and SEmu.
For each platform, we designed an ablation study, consisting of two
to three configurations, to measure the impact of PEmMU as precisely
as possible:

e Baseline (_BAsE): Each platform’s unmodified version serves
as a baseline to analyze how much coverage can be attributed
to the network stack

e Random packet (_RAND): Baseline extended by the ability to
send network packets consisting only of random data

e PEMU (_PEMU): Baseline with the ability to send network
packets emitted by PEmu.

As SEmU has the capability to send random network packets by
default, we use the two configurations SEMU_BASE and SEMU_PEMU.
In addition to evaluating how PEMU enhances existing rehosting
platforms, we assess its effectiveness against other network stack

fuzzing tools, namely EMNETTEST. While AFLNET may appear to be
arelevant baseline, fundamental differences limit its applicability in
the rehosting context. Applying AFLNET to firmware would require
manual source modifications (e.g., to remove checksums) and a
hardware-in-the-loop setup for trace collection. These requirements
conflict with the fundamental principles of rehosting. Moreover,
AFLINET focuses solely on the application layer and uses response
codes as feedback, offering only limited insights into other protocol-
layer interactions. As a result, AFLNET is not directly comparable
to PEMU’s broader, ENS-agnostic fuzzing capabilities.

5.2 Sample Set

In firmware fuzzing research, standard sample sets from prior stud-
ies [10, 13, 52] are used to enable a fair and consistent comparison
across different works. However, existing firmware sample sets
rarely include network applications, as network stacks have gener-
ally been outside the scope of past research. To address this short-
coming, we assembled a sample set of nine applications, listed in
Table 2. This set includes six novel applications along with two sam-
ples from SEmu [54] and one sample from FuzzwARE [39], featuring
diverse firmware across four different MCUs from three vendors,
spanning six OSes and five network stacks. These network stacks
cover three of the most widely used protocol suites:

(1) Ethernet and TCP/IP are the foundational standards in general-
purpose computing, facilitating communication across the
internet. The protocol suite includes multiple protocols es-
sential for networked communication. The samples that con-
tain a TCP/IP stack are 1) a HTTP Server with a static IPv4
address, 2) a UDP Server that uses DHCP to configure its IPv4
address, 3) a TCP Echo Server, and 4) a TCP Echo Client. Note
that the last two images were taken from the SEMU data set.
Bluetooth Low Energy (BLE) is a low-power Bluetooth stan-
dard optimized for close proximity communication. It oper-
ates on distinct physical channels: The advertisement chan-
nel, which is used for advertising, scanning, and connection
establishment, and the data channel, which is used for actual
data transmission. For the BLE stack, the applications are 1)
a BLE Heart Rate Monitor, which is built on zephyr-os, and
2) a nimBLE application by the nuttx operating system.
IEEE 802.15.4 is a radio-based protocol suite for establishing
WPAN networks. It operates on the two lowest layers and
is typically used with other high-level standards like 6LoW-
PAN or Zigbee. The samples implementing this stack are 1)
the contiki-ng Radio Ping, which is an ICMPv6 ping appli-
cation, 2) a Constrained Application Protocol (CoAP) Client
that tries to interact with a corresponding server, and 3) an
SNMP Server that features a known CVE and is part of the
FuzzwARE sample set.

—
S
~

—
[SY)
=

For FuzzwARE and HOEDUR, we configured firmware samples
using the built-in tool to generate appropriate configurations, using
provided templates wherever possible and documenting minimal
manual adjustments in the configurations. For instance, certain
nRF52840 DK samples required specific MCU values in user or
factory information configuration registers located in RAM. This
additional memory area was manually configured for samples using
this feature. All samples are published with our prototype.

Table 2: Tested evaluation samples.

Vendor MCU Protocol Suite ENS oS Sample Source
STM32 nucleo-f767zi Ethernet LwlIP FreeRTOS HTTP Server [44]
STM32 nucleo-f767zi Ethernet NetXDuo ThreadX UDP Server [44]
STM32 429 Ethernet LwlIP Raw TCP Echo Server [53]
STM32 429 Ethernet LwIP Raw TCP Echo Client [53]
Nordic nrf52840dk BLE nordic softdevice zephyr BLE Heart Rate Monitor [33]
Nordic nrf52840dk BLE nimBLE & nordic softdevice nuttx nuttx nimBLE [33]
Nordic nrf52840dk IEEE 802.15.4 ulP contiki-ng Radio Ping [11]
Nordic nrf52840dk IEEE 802.15.4 ulP contiki-ng CoAP Client [11]
Texas Instruments cc2538 IEEE 802.15.4 ulP contiki-ng SNMP Server [11]

Table 3: Setup of the EMNETTEST data set.

ENS CVE-ID Type EOS MCU
FreeRTOS MPS2

FreeRTOS- 2018-16523 Div-by-zero

plus-TCP 2018-16524 OOB Read
2018-16526 OOB Write
2018-16601 Integer Underflow
2018-16603 OOB Read

Contiki-ng 2021-21281 OOB Read
2022-26053 OOB Write

2020-17441 OOB Read
2020-17442 Integer Overflow
2020-17444 Integer Overflow
2020-17445 OOB Read
2020-24337 Infinite Loop

Contiki-ng TI cc2538dk

PicoTCP FreeRTOS ~ STM32 F769

To enable the comparison with EMNETTEST, we use their dataset,
which consists of twelve CVEs across three ENSs. As EMNETTEST
tests standalone ENSs compiled for the host system rather than
full firmware images, a direct coverage-based comparison is not
feasible in our rehosting setup. We used the following setup to
replicate their evaluation in our rehosting environment. First, we
selected three different MCUs to compile the network stacks to and
integrated each ENS with an embedded OS. We then backported
the vulnerabilities used by EMNETTEST (see Table 3).

5.3 Experiments

We perform four experiments to assess PEMU’s ability to improve the
coverage of existing approaches and to test whether PEmu allows a
fuzzer to detect bugs nested deep within the network stack.

Experiment 1: SEmu. First, we performed an ablation study on
SEmu. As SEMU only supports a limited chipset, we selected the
samples of their evaluation dataset that exhibit network behavior
and performed an ablation study for these samples. We fuzzed each
sample five times for 24 hours with the two versions of SEmu:
SEmu_BASE and SEMu_Pemu. Afterward, we collected the basic
blocks each run was able to cover and evaluated them.

Experiments 2 and 3: FuzzwARE & HOEDUR. Next, we per-
formed two similar ablation studies for FuzzwaRE and HOEDUR.
We fuzzed each sample of the full sample set five times for 24

hours with the three different versions (e.g., FUzZZWARE_BASE, Fuz-
ZWARE_RAND, and FuzzwaRE_PEMU; the same applies to HOEDUR).
We then again collected the basic blocks that each run was able to
cover and evaluated them.

Experiment 4: State-of-the-art comparison. To compare PEMU
with EMNETTEST, we ran HOEDUR_PEMU for 72 hours with sam-
ples containing the backported vulnerabilities and then analyzed
the results. We chose HOEDUR as the base rehosting platform be-
cause its usage of multiple input streams allows for the most stable
emulation [41].

Experiment 5: Applicability beyond network stacks. To eval-
uate whether PEMU’s techniques generalize beyond network-based
communication protocols, we extended it with support for the Mod-
bus protocol [46], which is widely used in industrial applications.
A Modbus frame consists of a device ID, a function code, a length
field, a variable-length payload, and a CRC checksum. To this end,
we fuzzed the heat-press firmware from the P2IM dataset [13],
which utilizes the Modbus protocol. Each configuration with Fuz-
ZWARE_RAND and FuzzwARE_PEMU was run five times for 24 hours.
Before starting the fuzzing campaign, we reverted previous modifi-
cations introduced by P2IM that had disabled the Modbus checksum
verification to ensure realistic conditions.

5.4 Results

In the following, we summarize the experimental results in relation
to the research questions. In addition to the selected plots in Fig-
ure 6, further plots can be found in the appendix. A more detailed
breakdown of the results can be found in Table 4.

5.4.1 RQI. To address the first research question on the applica-
bility of PEmMU across multiple rehosting platforms, we integrated it
with three distinct platforms: HOEDUR, FuzzwARE, and SEMU (see
Section 4). This demonstrates PEMU’s compatibility with platforms
that support (custom) network peripherals or basic block hooks
and affirms the design choice of platform independence. As shown
in Figure 6, PEMU visibly improved the coverage on all platforms
despite their divergent approaches, demonstrating its versatility
and applicability in embedded firmware fuzzing.

5.4.2 RQ2 - SEmu. The results in Figure 6a (and Figure ?? in the
appendix) display the coverage achieved by SEMu_PEmU (i.e., SEMU
with PEMU) and the coverage by SEMU_BASE (i.e., SEMU without any

2000 2000 2000
1500 = 1500 3 1500
3 g 8
5 2 3
3 S]
O P4 a
2 1000 % 1000 g 1000
2 2 2
@ % 2
2 % —— FUZZWARE BASE & —®— HOEDUR BASE
a 2500 500
500 —— SEMU BASE FUZZWARE RAND HOEDUR RAND
—— SEMU PEMU —A— FUZZWARE PEMU —A— HOEDUR PEMU
0 0 9
00:00 06:00 12:00 18:00 24:00 00:00 06:00 12:00 18:00 24:00 00:00 06:00 | 12:00 18:00 24:00
Time (hours) Time (hours) Time (hours)
(a) TCP echo server: SEmu (b) TCP echo server: FUZZWARE (c) TCP echo server: HOEDUR
2500
2500
S000\
2000
= = =
g 2000 z £ 4000
g & 1500 g
o o o
2 1500 F £ 3000
g g 8"
I & 2
.2 1000 2 1000 -2 2000
4 —®— FUZZWARE BASE 3 z <
m 22} m
500 FUZZWARE RAND 500 1000
—A— FUZZWARE PEMU
0 0 0
00:00 06:00 12:00 18:00 24:00 00:00 06:00 12:00 18:00 24:00 00:00 06:00 12:00 18:00 24:00
Time (hours) Time (hours) Time (hours)
(d) HTTP Server: FUZZWARE (e) COAP Client: FUZZWARE (f) BLE Heart Rate Monitor: FUZZWARE
2500 2500
5000
5 2000 - 2000 -
5 5 £ 4000
z z z
© 15001 9 1500 <
2 4 £ 3000
= g E
% 1000 % 1000 2 2000
4 —®— HOEDUR BASE 3 Z
m m m
500 HOEDUR RAND 500 1000
—A— HOEDUR PEMU
0 T T T T 0 T T T T 0
00:00 06:00 12:00 18:00 24:00 00:00 06:00 12:00 18:00 24:00 00:00 06:00 12:00 18:00 24:00
Time (hours) Time (hours) Time (hours)
(g) HTTP Server: HOEDUR (h) COAP Client: HOEDUR (i) BLE Heart Rate Monitor: HOEDUR

Figure 6: Selected coverage plots from the different ablation studies.

modifications). The coverage achieved by SEMu_PEMU outperforms
the baseline SEMU_BASE by 8.5% on average. Due to SEMU’s internal
architecture, it cannot send more than one packet per emulation run.
Still, this improvement highlights the benefits of network-aware
fuzzing.

5.4.3 RQ2 - FuzzwarRe & HoepuRr. Next, we discuss the results
for Fuzzware and HoEDUR—which both support the entire sample
set—together due to the similarity of their results. On average, PEMU
is able to improve the coverage of the FuzzwARE baseline by 40.7%,
while it improves the baseline of HOEDUR by 39.2%. To highlight
different aspects, we further analyze the results by protocol stack:

TCP/IP. For the four samples that implement a TCP/IP network
stack (i.e., HTTP Server, UDP Server, TCP Echo Server, and TCP Echo
Client), the results in Table 4 show a consistent pattern: For both

FuzzwAaRE and HOEDUR, the ablations with PEMU clearly outper-
form their respective baseline by achieving 32.5% more average
coverage for FuzzwARE and 48.2% for HOEDUR. When looking at
the combined number of basic blocks covered over the five fuzzing
runs, PEMU even improves basic-block coverage by 39% and 61.3%,
respectively. Notably, the second ablation (FuzzwARE_RAND and
HOEDUR_RAND) surpasses the baseline in both cases but is con-
sistently outperformed by the configurations using PEMu. These
results confirm the hypothesis that random inputs progress sig-
nificantly worse in network stacks that enforce strict semantic
constraints on their input. In a TCP/IP stack, these constraints are
already present on the IPv4 layer (i.e., the second lowest layer),
including checks for IPv4 addresses, a static protocol value, and
a header checksum. While some implementations do not enforce
the checksum, allowing randomized data to progress marginally

Table 4: Breakdown of the basic block coverage of each sample. base refers to the baseline (SEMu_BASE, FUZZWARE_BASE, and
HoOEDUR_BASE), rand to the ablation configuration FuzzwARE_RAND and HOEDUR_RAND, and PEmU to the full configuration
(SEmu_PEMmU, FuzzwarRe_PEmu, and HOEDUR_PEMU). The column rel imp measures the relative improvement of PEMU over the

baseline. We highlighted the results that are part of the summarized plots in Figure 6.

Target #BB in target #BB AVG #BB MAX #BB combined

‘ base rand PEmU rel imp ‘ base rand PEmU relimp ‘ base rand PEmuU relimp

; TCP Echo Server 5,212 | 1,315 = 1,417 8% | 1,375 = 1,425 4% | 1,375 = 1,425 4%
&2 TCP Echo Client 5,333 | 1,342 - 1,467 9% | 1,406 - 1,475 5% | 1,406 - 1,475 5%
TCP Echo Server 5,212 | 1,195 1,231 1,318 10% | 1,196 1,234 1,374 15% | 1,196 1,234 1,378 15%
TCP Echo Client 5,333 | 1,227 1,302 1,661 35% | 1,228 1,317 1,732 41% | 1,228 1,327 1,764 44%

«n UDP Server 5,451 | 1,928 2,160 2,336 21% | 1,938 2,394 2,375 23% | 1,938 2,396 2,390 23%
% HTTP Server 6,579 | 1,552 1,732 2,543 64% | 1,552 1,770 2,683 73% | 1,552 1,774 2,705 74%
E BLE Heart Rate Monitor 17,469 | 4,715 5,446 5,185 10% | 4,717 5,608 5,358 14% | 4,723 5,631 5,380 14%
E nuttx nimBLE 20,260 | 6,580 6,588 6,620 1% | 6,592 6,596 6,710 2% | 6,602 6,596 6,711 2%
CoAP Client 5,666 | 1,653 2,359 2,369 43% | 1,671 2,382 2,492 49% | 1,671 2,400 2,542 52%
SNMP Server 4,578 | 1,445 2,253 2,267 57% | 1,450 2,321 2,347 62% | 1,450 2,354 2,370 63%
Radio Ping 4,778 923 2,109 2,079 125% 929 2,145 2,108 127% 929 2,185 2,151 132%
TCP Echo Server 5212 | 1,190 1,285 1,787 50% | 1,198 1,663 1,915 60% | 1,200 1,665 1,947 62%
TCP Echo Client 5,333 | 1,218 1,242 1,828 50% | 1,222 1,296 1,957 60% | 1,227 1,299 2,049 67%
UDP Server 5,451 | 1,945 2,390 2,655 37% | 1,946 2,431 2,667 37% | 1,946 2,460 2,672 37%

& HTTP Server 6,579 | 1,561 1,865 2,429 56% | 1,562 1,915 2,800 79% | 1,562 1,931 2,802 79%
% BLE Heart Rate Monitor 1,7469 | 4,677 5,517 5,246 12% | 4,689 5,635 5,255 12% | 4,689 5,661 5,319 13%
T nuttx nimBLE 2,0260 | 6,619 6,627 6,619 0% | 6,637 6,644 6,642 0% | 6,639 6,646 6,643 0%
CoAP Client 5,666 | 1,784 2,492 2,319 30% | 1,786 2,572 2,403 35% | 1,786 2,612 2,435 36%
SNMP Server 4,578 | 1,440 2,519 2,328 62% | 1,440 2,633 2,368 64% | 1,440 2,758 2,402 67%
Radio Ping 4,778 | 1,332 2,203 2,083 56% | 1,332 2,277 2,115 59% | 1,332 2,349 2,149 61%

further, most packets fail at the IPv4 address validation. In contrast,
PEMU either leverages DHCP packets to dynamically assign the
firmware an IPv4 address or extracts the firmware’s IPv4 address by
parsing outgoing packets. Consequently, PEMU is able to progress
considerably further through the network stack.

IEEE 802.15.4. The results for the IEEE 802.15.4/6LoWPAN-
based samples (i.e., CoAP Client, Radio Ping, and SNMP Server)
differ from those of the TCP/IP samples. Both FUzZWARE_RAND
and FuzzwARE_PEMU cover up to 100% more basic blocks than
the baseline FuzzwARE_BASE. However, the difference in coverage
between FuzzwARE_RAND and FuzzwARE_PEMU is much smaller
and, in some cases, yields almost identical results. This trend is
similar for HOEDUR; due to the overall better coverage of the HoE-
DUR baseline compared to FUzzwARE, the relative improvement is
slightly smaller—on average 53%. Again, the improvement gains on
the second ablation HOEDUR_RAND are less significant or slightly
negative.

Generally speaking, these results reflect the differences in the
lower layers of the TCP/IP and the IEEE 802.15.4 network stacks.
In TCP/IP, the IPv4 layer (i.e., the second lowest layer) already acts
as a stringent barrier, discarding all semantically and syntactically
invalid packets. Conversely, in the IEEE 802.15.4 layer, stringent
checks like checksum validation are deferred to the transport layer
(i.e., the layer above IPv6). Header compression further simplifies
the validation of packets as valid, even without explicit addresses.
Consequently, random input can more easily penetrate the MAC

layer, 6LOWPAN adaption layer, and IPv6 network layer. The com-
plexity of these layers, due to compression and fragmentation and
a multitude of option headers, provides a more expansive code path
for coverage than TCP/IP. As PEMU prioritizes methodical explo-
ration of header fields, it requires additional time to achieve similar
coverage. However, manual inspection of the results revealed that,
for example, FUzzwARE_RAND was unable to induce coverage in
the application layer (i.e., SNMP and CoAP). At the same time,
FuzzwARE_PEMU consistently reached the respective handlers.

For HOEDUR, the difference between HOEDUR_RAND and HOE-
DUR_PEMU is exacerbated by performance reasons owed to the
cross-language setup, significantly slowing the execution speed.
Compared to unmodified HOEDUR the performance overhead ranges
from a factor of 2 to 10. This overhead can vary depending on
how many packets PEMU crafts per execution. As input lengths
grow over time, execution duration increases accordingly, leading
to a higher per-execution overhead of PEMu. However, to utilize
the multi-stream aspect provided by HOEDUR, our implementation
is forced to request input from HOEDUR in small chunks. As the
fuzzing input can only be supplied within the Rust context of HOE-
DUR, this necessitates crossing the language border multiple times
for a single network packet. We discuss this implementation aspect
further in Section 6.

Bluetooth Low Energy (BLE). The two samples that implement
a BLE network stack (i.e., nimBLE example and BLE Heart Rate Mon-
itor) yield similar results to those of the IEEE 802.15.4 stack. Unlike

the previous samples, both BLE samples include a proprietary com-
ponent by the MCU vendor, which contains the complex logic of
the BLE stack. This component explains the overall higher base
coverage of both FuzzwAaRe and HOEDUR in Table 4. For the BLE
Heart Rate Monitor, both FuzzwARE_RAND and FuzzwARE_PEMU
achieve up to 15% more coverage than FuzzwARE’s baseline. For
HOEDUR, this improvement is very similar, averaging 12%. This—
compared to the other protocol suites—modest improvement re-
flects the complexity of the sample and the BLE protocol suite in
general. Decreased emulation stability often limits the amount of
packets delivered to the firmware to a single packet. This restricts
network-related coverage primarily to the BLE advertising channel
(i.e., advertising packets, scan packets, and connection packets)
without establishing a connection that would enable access to the
application logic of BLE.

The nuttx nimBLE sample also poses a similar problem regarding
its complexity: contrary to the previous sample, however, the lowest
BLE layer only accepts frame types that contain the firmware’s
correct BLE address. Hence, packets with the wrong address are
discarded immediately. For FUzzwARE, the emulation was only in
one of the five runs stable enough for PEMU to successfully parse
a packet and extract the firmware’s BLE address. This enabled
FuzzwaRE_PEMU to outperform the other FuzzwARE_BASE and
FuzzwARE_RAND regarding total and average coverage (see Table 4).
However, for HOEDUR, this success was not replicated, resulting in
nearly identical results across all three ablations.

Evaluation of Analysis Timing. To evaluate the performance
of PEMU’s analysis component, we measure the detection timing
of new packet types (i.e., protocol detection) and values (e.g., ad-
dresses and nonces), using FuzzwArRe_PEMU as an example. In this
setup, we introduce an initial three-hour delay before enabling
PEMU to ensure that the fuzzer reaches the point where packets are
actually parsed by the firmware, which is an essential prerequisite
for any analysis. Across all runs, PEMU consistently classified each
firmware’s network stack correctly, enabling valid packet genera-
tion in all cases. For most targets, the plots in Figure 9 visibly exhibit
an increase in coverage around the three-hour mark, corresponding
to the startup of PEmu. Note that all detection times reported below
are relative to this initial three-hour delay.

The median time to detect the first protocol is 47 minutes, while
the median time for the last protocol detection is 12 hours and 33
minutes. These results show that PEMU can detect protocols rea-
sonably fast and can continuously expand the sequence of packets
it sends. The delay between protocol detections is a result of our
design: after each new configuration is found, the fuzzer is given
a configurable window of uninterrupted fuzzing, potentially un-
covering new firmware states that will feed back information into
PEMU ’s analysis. Taking the UDP echo firmware as an example,
PeEMU detected DHCP in its first analysis iteration and added two
DHCP packets to its configuration. After further fuzzing, PEmU’s
analysis added a UDP packet to the configuration. Next, PEMU de-
tected that the firmware also parses ARP packets and expands the
configuration. At this point, FuzzwaRre_PEMU is able to fuzz the
UDP echo server’s logic. During subsequent analysis runs, PEMU
also added an IGMP and an ICMP4 packet to the configuration, as
the firmware also implements handling for these protocols. This

step-by-step expansion illustrates the versatility of PEMU and shows
the importance of our dynamic, feedback-driven analysis approach.

The median time for detecting the first value is 1 hour and 35
minutes. Over the course of a fuzzing campaign, PEMU detects new
protocol configurations an average of 3.75 times, while new values
are detected 1.4 times on average. These values are typically either
(static) addresses or identifiers like the transaction ID field in DHCP.

In the following, we provide a detailed analysis of the cover-
age across the individual network layers, focusing specifically on
the network and transport layers. We exclude the two BLE sam-
ples, as the BLE protocol stack does not comply with the standard
OSI model [16], making a comparison difficult. On average, Fuz-
ZWARE_PEMU reaches the target’s network layer 25 minutes after
the three-hour delay, or 14 minutes after detecting the first pro-
tocol configuration. Overall, FuzzwaRE_PEMU successfully covers
the network layer of all seven non-BLE samples. For the transport
layer, the average time to first coverage is 3 hours and 5 minutes
after discovering the initial protocol configuration. Reaching the
transport layer usually coincides with a successful detection of the
target’s IP address, unless the target uses a dynamic IP address.
Then, PEMU assigns this address by sending the appropriate DHCP
packets. FuzzwaRe_PEMU reaches the transport layer for all cases
where the sample has enabled at least one transport layer protocol.
The only exception is the Radio Ping sample, which does not imple-
ment any functionality above the network layer. Comparing this to
our baseline, FUzZZWARE_RAND, we find it can reach the transport
layer in only a single case, and only after requiring an average of
10 hours and 21 minutes.

5.44 RQ3 Comparison with EMNETTEST. We ran HOEDUR_PEMU
for 72 hours on the EMNETTEST dataset and analyzed the results.
Our evaluation showed that PEMU successfully detected all twelve
known bugs in the data set (see Table 3), demonstrating both its
correctness and effectiveness. All detected bugs were located on the
network or transport layer, several requiring multiple subsequent
packets to trigger the bug, which highlights PEmU’s ability to handle
protocol state and sequencing. Additionally, PEMU discovered three
previously unknown bugs in the FreeRTOS-plus-TCP ENS, while
EMNETTEST did not detect any new issues in this stack. Furthermore,
even though the fuzzer ran for 72 hours, all bugs were rediscovered
within the first 24 hours.

5.4.5 RQ4 Bug Finding Ability of PEmMu. In addition to the twelve
real-world bugs rediscovered throughout the EMNETTEST experi-
ments, we identified five previously unknown bugs during the eval-
uation of PEmu. Three of these bugs were found in the FreeRTOS-
plus-TCP ENS. We are currently in the process of investigating and
disclosing them to the vendor. The fourth bug is an out-of-bounds
(OOB) write in LwIP. PEMU discovered it in one of the samples
introduced in the SEmu dataset. In contrast, SEMU was unable to
detect this bug that allows an attacker to control the target’s PC by
overwriting data structures behind the network buffer. Further anal-
ysis showed that the bug resulted from a misconfiguration during
the creation of the sample by the SEmu authors. We discovered the
fifth bug in the HAL of the STM32F767 MCU. It is an OOB read that
arises due to improperly handled thread synchronization. The tar-
get needs to receive a valid TCP segment, which leads to a response
from the firmware, to trigger the bug. Simultaneously, the firmware

600~F
=
3
G 4001
z
2
m
2
é 2001
FUZZWARE_RAND
—+— FUZZWARE_PEMU
0 T T T T
00:00 06:00 12:00 18:00 24:00

Time (hours)

Figure 7: Coverage plot for the heat-press firmware, which
utilizes the Modbus protocol.

automatically sends periodic ARP broadcasts to the network. If the
transmission of the response and the periodic broadcast overlap,
it can trigger a race condition, which leads to an OOB read that
can leak data to an attacker. We disclosed this to the vendor, who
acknowledged it and published a dedicated security advisory. This
bug emphasizes the importance of holistic testing of network stacks
in embedded firmware: although the bug does not reside in the net-
work stack, triggering it requires the reception of a valid packet.
Testing only the standalone network stack—like EMNETTEST does—
cannot reveal such bugs, highlighting the advantages of approaches
that enable an end-to-end analysis.

5.4.6 Experiment 5: Applicability of PEmu beyond Network Stacks.
To further assess PEMU’s applicability beyond network stacks, we
fuzzed the heat-press firmware [13], which communicates via the
Modbus protocol. Figure 7 shows the coverage achieved by both
ablations (FuzzwARE_PEMU and FuzzwARE_RAND). As valid pack-
ets need to have a correct CRC checksum, FuzzwaARe_PEMU out-
performs FUZZWARE_RAND by a significant margin. Manual anal-
ysis confirms that packets from FuzzwARE_RAND could pass the
checksum verification occasionally; however, this happens too in-
frequently to produce meaningful new coverage. Statistically, the
probability of a randomly generated packet having a correct CRC-
16 checksum is very low. This case study demonstrates that PEMU
is able to support structured communication protocols outside the
network domain.

6 Discussion and Limitations

In the following, we discuss potential limitations of our approach
and our prototype and explore directions for future research.

Low-Level Packet Transmission and DMA. PEMU is designed
to extend any firmware rehosting platform that integrates a fuzzer
for firmware testing. We assume the mechanism for receiving and
transmitting low-level network frames to be known, i.e., we require
a mechanism to control the contents of the low-level frames that
the firmware receives (by writing them to the appropriate firmware
memory) and a mechanism to read the frames that the firmware
transmits (by reading them from firmware memory). The main

mechanism to transmit data, such as Ethernet frames or over-the-
air radio frames, is DMA. If the rehosting platform handles DMA,
the transfer mechanism requirement will already be fulfilled. Fully
automated DMA transfer modeling is an active research area or-
thogonal to our work. A first step in this direction is DICE [28],
which enables detection and rehosting of DMA streams by analyz-
ing MMIO-based configuration patterns. The approach is geared to-
wards simple DMA interactions typically performed by peripherals
like UART, SPI, or ADC. However, complex MCUs and peripherals
(like network controllers) often perform more sophisticated DMA
schemes that rely on RAM-based control structures (e.g., linked
lists or array lists). DICE’s modeling approach cannot capture these
structures. Recent work by Scharnowski et al. [40] improves upon
DICE, by supporting more soph isticated transfer mechanisms. This
offers the possibility to attach PEMU in an entirely generic manner.

To stay independent of the progress of automated DMA model-
ing research, PEMU implements alternative options to integrate with
the frame transmission of the rehosting platform. One option is an
available implementation of a network peripheral that facilitates
the reception and transmission of low-level frames to and from
firmware memory. A second option is hooking into the hardware
abstraction layer (HAL) functions. Here, PEMU provides hook imple-
mentations that can be configured in the rehosting environment to
be invoked when a given packet reception or transmission function
is called in firmware code.

Performance Impact in HOEDUR. As discussed in Section 5.4.3,
the cross-language interaction between Python and Rust, preva-
lent in HOEDUR, introduces a measurable performance impact. The
decision to implement PEMU in Python was mainly influenced
by the current ecosystem of rehosting platforms: most rehost-
ing platforms are either written in Python or make heavy use of
it [10, 13, 28, 39, 52, 54].

Only recently, firmware fuzzers have started adopting Rust [9,
41]. Creating two separate implementations in Python and Rust
would have been impractical, as it could have introduced incon-
sistencies and increased maintenance complexity. Additionally, it
would have impacted comparisons across platforms.

Scaling with General Rehosting Progress. Like previous work
that builds upon rehosting platforms, PEmU relies on the ability
of the underlying rehosting platform to bring the firmware into
a state in which it receives packets. As described in Section 3.4.1,
we account for this via an iterative probing approach. However, if
the rehosting platform hits a roadblock unrelated to networking
that prevents it from ever discovering the first layer of network
functionality, the virtual network of PEMU remains unused. Similarly,
while PEMU provides a transparent input encapsulation mechanism,
it still relies on the fuzzer to provide raw input for the application
layer that is ultimately tested. As such, PEMU’s benefit scales with
further improvements to general rehosting platforms.

Manual Effort. The manual effort associated with using PEMU
can stem from two sources. The first source is the integration of new
protocols with PEmu. This is a one-time effort that largely depends
on the protocol’s complexity: structurally simple protocols like
ARP, Modbus, or Ethernet can typically be added within minutes,
whereas complex protocols that use compression or fragmentation

may require several hours of effort. Notably, PEMU does not require
exhaustive manual modeling of all protocol fields. Instead, only
semantically critical fields (i.e., those essential for correct parsing)
must be handled explicitly. All remaining fields can be controlled
by the fuzzer. The second source of manual effort arises when con-
figuring PEMU for use with a new firmware. In general, PEMU does
not need any specific configuration, as it autonomously discov-
ers new protocols and firmware-specific values like addresses and
nonces. Instead, the main overhead arises when configuring the
input channel through which the firmware receives its raw net-
work frames. As discussed earlier, this effort is negligible if DMA
modeling is available. Otherwise, it requires a one-time integration
effort per MCU-HAL combination. First, the location of the HAL-
specific abstraction function that handles the reception of network
packets needs to be identified. This has to be done once per HAL
as the function is consistent even across different MCUs. Second,
an MCU-specific handler function—typically between 200 and 500
lines of code—that identifies the network packet buffer in RAM and
injects the packet generated by PEMU needs to be written. As DMA-
modeling for rehosting is an actively researched field, we consider
this source of manual effort a temporary limitation imposed by
the current capabilities of the underlying rehosting systems, rather
than an inherent constraint of PEMU.

General Fuzzing Limitations. One of the most common limi-
tations in general-purpose fuzzing is handling encryption, as muta-
tions applied to encrypted data are unlikely to also produce validly
encrypted data. To a certain degree, PEMU can help solve this for
firmware fuzzing, as encryption algorithms can be integrated into
PEMU in a similar manner to compression. However, PEMU cannot
handle cases where a pre-shared secret or private key is required
for authentication. In this case, reverse-engineering is necessary
to either extract the secret or to replace, e.g., a certificate to enable
PEMU to act as an authenticated server. Fortunately, there are many
use cases where this is not necessary. For example, most embed-
ded web servers do not require the client (in this case, the fuzzer +
PEMU) to authenticate itself.

7 Related Work

Next, we discuss existing research on the two main areas on which
the majority of our work focuses.

Firmware Rehosting and Fuzzing. Our work is based on the
huge body of work in the field of embedded rehosting and fuzzing [6,
9,10, 13, 15, 19, 28, 31, 38, 39, 41, 43, 51, 52, 54]. Especially HOEDUR
and FuzzwARE by Scharnowski et al. [39, 41] and SEmU by Zhou
et al. [54] serve as the base for the implementation of our approach.
We expect that other rehosting methods can also benefit from the
virtual network provided by PEmu. Beyond rehosting, research
has also expanded to fuzzing embedded hardware [1, 8, 22, 26, 36]
or using partial emulation to solve the hardware-dependency of
firmware [20, 24, 29, 30].

Network Application Fuzzing. Network application fuzzing for
general-purpose software has been extensively studied, leading to
tools such as AFLNET [35], SGFuzz [3], STATEAFL [32], BLEEM [25],
and FuzzTRUCTION-NET [4], each introducing different methods
to address this challenge. Existing approaches primarily target the

application layer, leveraging modified network traffic seeds or OS
functionalities to construct packets that encapsulate fuzzing input.

8 Conclusion

In this work, we introduced PEMu, the first automated approach
for fuzzing the network stacks of embedded firmware. We tackle
the challenges of ensuring well-formed encapsulation within net-
work packets and awareness of the protocol state. PEMU focuses
on the in-depth exploration of firmware by dynamically analyzing
its network-related behavior and adapting to it to provide relevant
fuzzing inputs encapsulated in seemingly real network packets.
Due to its robust and automated analysis approach, it is possible to
apply PEMU without requiring domain knowledge. To demonstrate
how existing fuzzing methods can benefit from a virtual network
stack, we integrated PEMU with three state-of-the-art rehosting plat-
forms. In a comprehensive evaluation, we showed that our method
provides an effective way of analyzing and fuzzing firmware using
common types of embedded networking protocols.

Acknowledgments

We thank the anonymous reviewers and our shepherd for their
valuable feedback. This work was funded by the European Research
Council (ERC) under the consolidator grant RS?® (101045669) and
by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy (EXC 2092 CASA
— 390781972). This material is based upon work supported by the
National Science Foundation under Award No. 2232915, 2146568,
2442984, and 2247954, as well as by the Advanced Research Projects
Agency for Health (ARPA-H) under Contract No. SP4701-23-C-
0074. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the NSF or ARPA-H.

References

[1] Yousra Aafer, Wei You, Yi Sun, Yu Shi, Xiangyu Zhang, and Heng Yin. Android
SmartTVs Vulnerability Discovery via Log-Guided Fuzzing. In USENIX Security
Symposium, 2021.

Paschal C Amusuo, Ricardo Andrés Calvo Méndez, Zhongwei Xu, Aravind

Machiry, and James C Davis. Systematically detecting packet validation vulnera-

bilities in embedded network stacks. In ACM/IEEE International Conference on

Automated Software Engineering (ASE), 2023.

[3] Jinsheng Ba, Marcel Bohme, Zahra Mirzamomen, and Abhik Roychoudhury.
Stateful Greybox Fuzzing. In USENIX Security Symposium, 2022.

[4] Nils Bars, Moritz Schloegel, Nico Schiller, Lukas Bernhard, and Thorsten Holz.
No Peer, no Cry: Network Application Fuzzing via Fault Injection. In ACM
Conference on Computer and Communications Security (CCS), 2024.

[5] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In USENIX
Annual Technical Conference, 2005.

[6] Chen Cao, Le Guan, Jiang Ming, and Peng Liu. Device-agnostic Firmware Execu-

tion is Possible: A Concolic Execution Approach for Peripheral Emulation. In

Annual Computer Security Applications Conference (ACSAC), 2020.

Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele. Towards Au-

tomated Dynamic Analysis for Linux-based Embedded Firmware. In Symposium

on Network and Distributed System Security (NDSS), 2016.

[8] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. IoTFuzzer: Discovering Memory Corruptions in IoT Through App-based
Fuzzing. In Symposium on Network and Distributed System Security (NDSS), 2018.

[9] Michael Chesser, Surya Nepal, and Damith C Ranasinghe. Multifuzz: A multi-

stream fuzzer for testing monolithic firmware. In USENIX Security Symposium,

2024.

Abraham A. Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David

Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias Payer.

[2

7

[11]

[12]

[13

[14]

[15]

[16]

(17

==
2%

[20

[21]

[22

[23]

[24

[25

[26]

[27

[28

[29]

[30]

[31]

[32]

[33

[34]

HALucinator: Firmware Re-hosting Through Abstraction Layer Emulation. In
USENIX Security Symposium, 2020.

Contiki-NG Team. Contiki-NG: The OS for Next Generation IoT Devices. https:
//github.com/contiki-ng/contiki-ng, as of September 10, 2025.

Bo Feng, Meng Luo, Changming Liu, Long Lu, and Engin Kirda. AIM: Auto-
matic Interrupt Modeling for Dynamic Firmware Analysis. IEEE Transactions on
Dependable and Secure Computing, 2023.

Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scalable and Hardware-
independent Firmware Testing via Automatic Peripheral Interface Modeling.
In USENIX Security Symposium, 2020.

Andrea Fioraldi, Dominik Maier, Heiko Eif}feldt, and Marc Heuse. AFL++: Com-
bining Incremental Steps of Fuzzing Research. In USENIX Workshop on Offensive
Technologies (WOOT), 2020.

Jian Gao, Yiwen Xu, Yu Jiang, Zhe Liu, Wanli Chang, Xun Jiao, and Jiaguang Sun.
Em-fuzz: Augmented firmware fuzzing via memory checking. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 39(11), 2020.
Carles Gomez, Joaquim Oller, and Josep Paradells. Overview and Evaluation of
Bluetooth Low Energy: An Emerging Low-Power Wireless Technology. sensors,
2012.

Harrison Green and Thanassis Avgerinos. GraphFuzz: Library API Fuzzing
with Lifetime-aware Dataflow Graphs. In ACM/IEEE International Conference on
Automated Software Engineering (ASE), 2022.

Steve Heath. Embedded Systems Design. Elsevier, 2002.

Grant Hernandez, Marius Muench, Dominik Maier, Alyssa Milburn, Shinjo Park,
Tobias Scharnowski, Tyler Tucker, Patrick Traynor, and Kevin Butler. FirmWire:
Transparent Dynamic Analysis for Cellular Baseband Firmware. In Symposium
on Network and Distributed System Security (NDSS), 2022.

Markus Kammerstetter, Christian Platzer, and Wolfgang Kastner. Prospect: Pe-
ripheral Proxying Supported Embedded Code Testing. In ACM Symposium on
Information, Computer and Communications Security (ASIACCS), 2014.

Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang, and
Yongdae Kim. Firmae: Towards large-scale emulation of iot firmware for dynamic
analysis. In Annual Computer Security Applications Conference (ACSAC), 2020.
Taegyu Kim, Vireshwar Kumar, Junghwan Rhee, Jizhou Chen, Kyungtae Kim,
Chung Hwan Kim, Dongyan Xu, and Dave Jing Tian. PASAN: Detecting periph-
eral access concurrency bugs within {Bare-Metal} embedded applications. In
USENIX Security Symposium, 2021.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. Evaluat-
ing Fuzz Testing. In ACM Conference on Computer and Communications Security
(CCS), 2018.

Karl Koscher, Tadayoshi Kohno, and David Molnar. SURROGATES: Enabling
Near-Real-Time Dynamic Analyses of Embedded Systems. In USENIX Workshop
on Offensive Technologies (WOOT), 2015.

Zhengxiong Luo, Junze Yu, Feilong Zuo, Jianzhong Liu, Yu Jiang, Ting Chen,
Abhik Roychoudhury, and Jiaguang Sun. Bleem: Packet Sequence Oriented
Fuzzing for Protocol Implementations. In USENIX Security Symposium, 2023.
Xiaoyue Ma, Qiang Zeng, Haotian Chi, and Lannan Luo. No more companion
apps hacking but one dongle: Hub-based blackbox fuzzing of iot firmware. In
Conference on Mobile Systems, Applications and Services, 2023.

Valentin JM Manes, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J Schwartz, and Maverick Woo. The Art, Science, and Engineering
of Fuzzing: A Survey. IEEE Transactions on Software Engineering, 47(11):2312—
2331, 2019.

Alejandro Mera, Bo Feng, Long Lu, and Engin Kirda. DICE: Automatic Emulation
of DMA Input Channels for Dynamic Firmware Analysis. In IEEE Symposium on
Security and Privacy (S&P), 2021.

Alejandro Mera, Changming Liu, Ruimin Sun, Engin Kirda, and Long Lu. SHiFT:
Semi-hosted Fuzz Testing for Embedded Applications. In USENIX Security Sym-
posium, 2024.

Marius Muench, Dario Nisi, Aurélien Francillon, and Davide Balzarotti. Avatar 2:
A Multi-target Orchestration Platform. In Symposium on Network and Distributed
System Security (NDSS), Workshop on Binary Analysis Research, 2018.

Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide
Balzarotti. What You Corrupt Is Not What You Crash: Challenges in Fuzzing
Embedded Devices. In Symposium on Network and Distributed System Security
(NDSS), 2018.

Roberto Natella. StateAFL: Greybox Fuzzing for Stateful Network Servers. Em-
pirical Software Engineering, 27(7):191, 2022.

Nordic Semiconductor. nRF Connect SDK: sdk-nrf.
nrfconnect/sdk-nrf, as of September 10, 2025.

Dorottya Papp, Zhendong Ma, and Levente Buttyan. Embedded Systems Security:
Threats, Vulnerabilities, and Attack Taxonomy. In Annual Conference on Privacy,
Security and Trust (PST), 2015.

https://github.com/

[35

[36

(37]

[38

[39

=
=

[41

[42

[43

[44

=
i)

NN
L

(53]

(54]

Van-Thuan Pham, Marcel Bohme, and Abhik Roychoudhury. AFLNet: A Greybox
Fuzzer for Network Protocols. In IEEE International Conference on Software
Testing, Validation and Verification (ICST), 2020.

Wang Qinying, Chang Boyu, Ji Shouling, Tian Yuan, Zhang Xuhong, Zhao Binbin,
Pan Gaoning, Lyu Chenyang, Payer Mathias, Wang Wenhai, and Beyah Reheem.
SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices. In IEEE
Symposium on Security and Privacy (S&P), 2024.

John Romkey. Nonstandard for transmission of IP datagrams over serial lines:
SLIP. RFC 1055, 1988.

Jan Ruge, Jiska Classen, Francesco Gringoli, and Matthias Hollick. Frankenstein:
Advanced Wireless Fuzzing to Exploit New Bluetooth Escalation Targets. In
USENIX Security Symposium, 2020.

Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric Gustafson, Marius Muench,
Giovanni Vigna, Christopher Kruegel, Thorsten Holz, and Ali Abbasi. Fuzzware:
Using Precise MMIO Modeling for Effective Firmware Fuzzing. In USENIX Security
Symposium, 2022.

Tobias Scharnowski, Simeon Hoffmann, Moritz Bley, Simon Warner, Daniel
Klischies, Felix Buchmann, Nils Ole Tippenhauer, Thorsten Holz, Marius Muench,
and Reviewing Model. GDMA: Fully Automated DMA Rehosting via Iterative
Type Overlays. In USENIX Security Symposium, 2025.

Tobias Scharnowski, Simon Woerner, Felix Buchmann, Nils Bars, Moritz
Schloegel, , and Thorsten Holz. Hoedur: Embedded Firmware Fuzzing using
Multi-Stream Inputs. In USENIX Security Symposium, 2023.

Moritz Schloegel, Nils Bars, Nico Schiller, Lukas Bernhard, Tobias Scharnowski,
Addison Crump, Arash Ale-Ebrahim, Nicolai Bissantz, Marius Muench, and
Thorsten Holz. SoK: Prudent Evaluation Practices for Fuzzing. In IEEE Symposium
on Security and Privacy (S&P), 2024.

Lukas Seidel, Dominik Maier, and Marius Muench. Forming Faster Firmware
Fuzzers. In USENIX Security Symposium, 2023.
STMicroelectronics. STM32CubeF7 MCU Firmware Package.
STMicroelectronics/STM32CubeF7/, as of September 10, 2025.
Hui Jun Tay, Kyle Zeng, Jayakrishna Menon Vadayath, Arvind S Raj, Audrey
Dutcher, Tejesh Reddy, Wil Gibbs, Zion Leonahenahe Basque, Fangzhou Dong,
Adam Doupe, Tiffany Bao, Yan Shoshitaishvili, and Ruoyu Wang. Greenhouse:
Single-Service Rehosting of Linux-Based Firmware Binaries in User-Space Emu-
lation. In USENIX Security Symposium, 2023.

George Thomas. Introduction to the modbus protocol. The Extension, 2008.
Unicorn Engine. https://www.unicorn-engine.org/, as of September 10, 2025.
Christopher Wright, William A. Moeglein, Saurabh Bagchi, Milind Kulkarni,
and Abraham A. Clements. Challenges in Firmware Re-hosting, Emulation, and
Analysis. ACM Computing Surveys (CSUR), 54(1):1-36, 2021.

Joobeom Yun, Fayozbek Rustamov, Juhwan Kim, and Youngjoo Shin. Fuzzing of
Embedded Systems: A Survey. ACM Computing Surveys (CSUR), 2022.

Michat Zalewski. American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/, 2013.
Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and
Limin Sun. FIRM-AFL: High-Throughput Greybox Fuzzing of IoT Firmware via
Augmented Process Emulation. In USENIX Security Symposium, 2019.

Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. Automatic Firmware Emulation
through Invalidity-guided Knowledge Inference. In USENIX Security Symposium,
2021.

Wei Zhou, Lan Zhang, Le Guan, Peng Liu, and Yuging Zhang. SEmu GitHub
Repository. https://github.com/MCUSec/SEmu, as of September 10, 2025, 2022.
Wei Zhou, Lan Zhang, Le Guan, Peng Liu, and Yuqing Zhang. What Your
Firmware Tells You Is Not How You Should Emulate It: A Specification-Guided
Approach for Firmware Emulation. In ACM Conference on Computer and Com-
munications Security (CCS), 2022.

github.com/

A SEmvu Results

We present the results of the SEMU experiment in Figure ??. The
natural language processing approach by SEmu only supports a lim-
ited data set Therefore, we were only able to evaluate two samples.

B FuzzwARE and HOEDUR Results

The collected results of the evaluation with FuzzwARE and HOEDUR
are displayed in Figure 9 and Figure 10. Both fuzzing platforms
support the entire dataset. The plots show the median and the 95%
confidence interval.

https://github.com/contiki-ng/contiki-ng
https://github.com/contiki-ng/contiki-ng
https://github.com/nrfconnect/sdk-nrf
https://github.com/nrfconnect/sdk-nrf
github.com/STMicroelectronics/STM32CubeF7/
github.com/STMicroelectronics/STM32CubeF7/
https://www.unicorn-engine.org/
https://lcamtuf.coredump.cx/afl/
https://github.com/MCUSec/SEmu

Basic Blocks Covered Basic Blocks Covered Basic Blocks Covered Basic Blocks Covered

Basic Blocks Covered

Figure 9: Coverage plots of the ablation study on FuzzwaRrRE

Time (hours)

(i) c2538 SNMP Server

2500
2000
2000 E
g 1500
&1
1500 F %
2
@
1000 51
—®— FUZZWARE BASE 2
——
500 FUZZWARE RAND 500
—a— FUZZWARE PEMU
00:00 06:00 12:00 1800 2400 00:00 06:00 12:00 18:00 2400
Time (hours) Time (hours)
(a) £767 HTTP Server (b) £767 UDP Server
1250
1500
1000 2
:
3
750 g 1000
2
=
500 P
2 500
250
0
00:00 06:00 1200 1800 2400 00:00 06:00 12:00 1800 2400
Time (hours) Time (hours)
(c) f429 TCP Echo Server (d) f429 TCP Echo Client
5000 6000
3
4000 5
2
S 4000
3000 2
E
]
2000 4
£ 2000
1000
00:00 06:00 1200 1800 2400 00:00 06:00 12:00 18500 2400
Time (hours) Time (hours)
(e) nrf52840dk BLE Heart Rate Monitor (f) nrf52840dk nuttx nimBLE
2500
2000
2000 /'
=
2
1500 £
S 1500
3
1000 E
— 21000
=
500 500
00:00 06:00 1200 1800 2400 00:00 06:00 12100 18:00 24100
Time (hours) Time (hours)
(g) nrf52810dk Radio Ping (h) nrf52810dk CoAP Client
2000 //
1500
1000
500
00:00 06:00 12:00 1800 2400

Basic Blocks Covered Basic Blocks Covered

Basic Blocks Covered

00 /_’/_/—f— 2500
2000 ? 2000 % 1500
1500
2 1500 2
b 100
= =
1000 2 1000 2
HOEDUR BASE Z 2
@ 2500
500 HOEDUR RAND S0
—4— HOEDUR PEMU
00:00 0600 1200 1800 2400 00:00 06100 1200 1800 2400 00:00 06100 1200 1800 2400
Time (hours) Time (hours) Time (hours)
(a) f767 HTTP Server (b) £767 UDP Server (c) f429 TCP Echo Server
I
5000 - 6000
1500
B z
S S a0
1000 oo 3
& =
% 2000 2
00 a & 2000
1000
00:00 06:00 12000 1800 2400 00:00 0600 1200 1800 2400 00:00 0600 12000 1800 2400
Time (hours) Time (hours) Time (hours)
(d) f429 TCP Echo Client (e) nrf52840dk BLE Heart Rate Monitor (f) nrf52840dk nuttx nimBLE
L p————— 2500
| ——————————
5 2000 3 2000
1500 H H
J—/_/—Ji S 1500 < 1500
E E
1000 2 1000 % 1000
& &
00 500 500
00:00 0600 1200 1800 2400 00:00 06100 1200 1800 2400 00:00 06100 1200 1800 2400
Time (hours) Time (hours) Time (hours)
(g) nrf52840dk Radio Ping (h) nrf52840dk CoAP Client (i) cc2538 SNMP Server

Figure 10: Coverage plots of the ablation study on HOEDUR

	Abstract
	1 Introduction
	2 Background
	2.1 Firmware in Embedded Systems
	2.2 Linux-based Fuzzing
	2.3 Rehosting-based Fuzzing
	2.4 Fuzzing Embedded Network Stacks

	3 Design
	3.1 High-Level Overview
	3.2 Protocol-Aware Firmware Rehosting
	3.3 Platform Independency
	3.4 Pemu-based Network Traffic Analysis

	4 Implementation
	4.1 Implementation Aspects of Pemu
	4.2 Pemu-based Analysis
	4.3 Integration with Existing Fuzzing Platforms

	5 Evaluation
	5.1 Setup
	5.2 Sample Set
	5.3 Experiments
	5.4 Results

	6 Discussion and Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

