
HOEDUR: Embedded Firmware Fuzzing using Multi-Stream Inputs

Tobias Scharnowski∗, Simon Wörner∗, Felix Buchmann‡, Nils Bars,
Moritz Schloegel, and Thorsten Holz

CISPA Helmholtz Center for Information Security
‡Ruhr University Bochum

Abstract
Embedded systems with their diverse, interconnected com-

ponents form the backbone of our digital infrastructure. De-
spite their importance, analyzing their security in a scalable
way has remained elusive and challenging. Recent firmware
rehosting work has brought scalable, dynamic analyses to
embedded systems, making fuzzing for automated vulnera-
bility assessments feasible. As these works focus on model-
ing device behavior rather than fuzzing, they integrate with
off-the-shelf fuzzers in an ad-hoc manner. They re-interpret
traditional flat binary fuzzing input as a sequence of hardware
responses. In practice, this presents the fuzzer with an input
layout that is fragile, opaque, and hard to mutate effectively.

Our work is based on the insight that while firmware emu-
lation recently matured significantly, the input space is pre-
sented to the fuzzer in an ineffective manner. We propose a
novel method for a firmware-aware fuzzing integration based
on multi-stream inputs. We reorganize the previously flat,
sequential, and opaque firmware fuzzing input into multiple
strictly typed and cohesive streams. This allows our fuzzer,
HOEDUR, to perform type-aware mutations and maintain its
progress. It also enables firmware fuzzing to use state-of-the-
art mutation techniques. Overall, we find that these techniques
significantly increase fuzzing effectiveness. Our evaluation
shows that HOEDUR achieves up to 5x the coverage of state-
of-the-art firmware fuzzers, finds bugs that other fuzzers do
not, and discovers known bugs up to 550x faster. In total,
HOEDUR uncovered 23 previously unknown bugs.

1 Introduction

Embedded systems are ubiquitous, interconnected, and at the
heart of smart homes, critical infrastructure, as well as the
Internet of Things. From a security perspective, they are chal-
lenging to analyze because they are diverse, i. e., there is no
common architecture and different vendors use custom hard-
and software to build embedded systems. Moreover, these

*Authors contributed equally to this work

systems continuously process inputs from multiple hardware
peripherals, such as serial data, sensor readings, and over-
the-air packets. This poses significant challenges to testing
the security of these systems. One particularly promising ap-
proach to addressing these challenges is automated firmware
rehosting, which allows different firmware to run in generic
emulators [13, 18, 28, 47, 60]. Recent advances in this area
have enabled dynamic analysis techniques to scale [55].

Some of these firmware rehosting approaches apply fuzz
testing (fuzzing) [13,18,47,60], a dynamic analysis technique
that sends random inputs to the system under test. However,
these works mainly focus on modeling hardware peripheral
behavior to successfully run a given firmware image in an em-
ulator. They do not specifically study the firmware fuzz testing
process itself. Instead, they integrate off-the-shelf fuzzers into
their system in an ad-hoc manner. In existing work, the emu-
lator naïvely translates fuzzer-provided bytes sequentially in
a flat manner [18, 47, 60]. Every time the firmware accesses
one of its peripherals, the next few fuzzer-provided bytes are
interpreted dynamically to serve the request.

We identify two inherent issues with this ad-hoc integration
of existing fuzzers: First and most importantly, this flat pro-
cessing of fuzzer-generated input causes the input structure
to be fragile due to its sequential nature; even the smallest
changes to early input bytes may change the firmware exe-
cution path and, thus, may also change the interpretation of
the following fuzzing input bytes in an avalanche effect. This
is due to the fact that firmware continuously processes data
from multiple hardware sources. To respond to data retrieved
from its different peripherals (e. g., a temperature sensor), the
firmware may interrupt its current processing to react to the
changes in its environment. Interrupts are crucial to react to
external events in a timely fashion. Thus, the execution flow
of the firmware directly depends on the fuzzer-generated data.
Due to this frequent switching of firmware logic between its
tasks, the data of each task is scattered across the input. For ex-
ample, firmware may interrupt the retrieval of an IPv6 packet
to read a sensor value. This interruption consumes data, such
that the IPv6 packet is split within the fuzzer-generated input.

This, in turn, renders many existing mutation techniques in-
effective, such as multi-byte arithmetic or dictionary-based
insertions, as they assume continuous data. Consequently, mu-
tations frequently discard fuzzing progress because previously
well-structured inputs are interpreted differently. A second
downside of the ad-hoc integration of general-purpose fuzzers
is that the fuzzer does not account for embedded firmware-
specific behavior. For example, firmware is designed to run for
an infinite amount of time, while general-purpose applications
typically process a finite input.

In this work, we devise a firmware-aware fuzzer that uti-
lizes a multi-stream input representation. As opposed to pre-
vious work, which represents hardware behavior as a flat
binary input, we subdivide firmware inputs into multiple data
streams, each representing a distinct use of a hardware regis-
ter. This results in a well-structured input format containing
strongly-typed data. Our multi-stream approach has multi-
ple advantages: First, we can mutate the data pertaining to
one particular hardware feature (one data stream) without
impacting existing semantics of another hardware feature
(another data stream). In contrast to a flat binary input for-
mat, this stabilizes our inputs, allowing the fuzzer to preserve
progress. Second, our strongly-typed data streams allow us
to perform type-aware mutations. Third, we are now able to
collect per-stream performance metrics, which the fuzzer can
use to prioritize mutating state-rich parts of the input.

One challenging aspect of our approach is the sheer amount
of data streams: As firmware typically accesses a high number
of hardware registers, we require hundreds of streams. Manu-
ally identifying and configuring them is therefore infeasible.
We solve this by automatically assigning a data stream for
each unique hardware access that we observe during emula-
tion. A second challenge lies in the fact that most hardware
registers represent the rather uninteresting low-level status of
a device as opposed to actual application data. This makes
the majority of data streams undesirable to mutate extensively
past a certain point. To focus on mutating interesting data
over time, we utilize a size-weighted version of Thompson
sampling to schedule data streams for mutation.

We implement our approach in a prototype called HOEDUR.
We evaluate HOEDUR on a sample set of 32 firmware images
used in the evaluation of previous work. Our evaluation shows
that HOEDUR achieves up to 5x the coverage of comparable
state-of-the-art firmware fuzzers and triggers known bugs up
to 550 times faster. HOEDUR also uncovered 23 previously
unknown bugs, including 8 new bugs in the firmware images
contained in the data set of previous work. We have respon-
sibly disclosed these issues to their respective vendors in a
coordinated way. So far, 22 CVEs have been assigned.

In summary, we make the following key contributions:
• We propose a novel multi-stream firmware input rep-

resentation that allows firmware fuzzers to effectively
mutate input and preserve fuzzing progress.

• We present the design and implementation of HOEDUR,

an efficient firmware-aware fuzzer utilizing our multi-
stream input representation.

• In a comprehensive evaluation, we show that our ap-
proach allows HOEDUR to significantly outperform state-
of-the-art fuzzers in firmware fuzzing. As part of the
evaluation, HOEDUR uncovered 23 novel bugs, which
we responsibly disclosed to their respective vendors.

To foster research on this topic, we will release HOE-
DUR and the experimental data set at https://github.com/
fuzzware-fuzzer/hoedur.

2 Firmware Fuzzing

Before introducing our multi-stream firmware input represen-
tation, we provide a brief overview of firmware fuzzing and
challenges in this area.

2.1 Embedded Systems Firmware
Embedded systems are usually purpose-built and can consist
of a number of different peripheral devices. The software
running on these systems is known as firmware. Due to size
and resource constraints, firmware is often built using one of
the many specialized operating systems. So-called bare-metal
firmware may also implement the required functionality itself,
without an operating system. The firmware is responsible for
all functions provided by the embedded system, ranging from
the business logic down to the driver communicating with its
peripheral devices. Logical tasks within embedded firmware
are usually strongly coupled with an operating system library.
This contrasts general-purpose software, where tasks are iso-
lated and interact only with the operating system, using a set
of system calls. Firmware with strongly-coupled tasks is also
known as monolithic firmware.

2.2 Firmware-Peripheral Communication
To communicate with its surrounding hardware peripherals,
firmware drivers use a handful of mechanisms for different
purposes, e. g., Memory-Mapped Input/Output (MMIO) to
modify and/or retrieve the state of a peripheral. Each periph-
eral has a memory region within the physical address space
assigned to it. Within this memory region, the peripheral
exposes a set of MMIO registers. Store operations to these
registers allow the firmware to modify the peripheral state
(such as setting its configuration), while load operations allow
the firmware to retrieve the peripheral state or read actual data.
As a given system typically contains a variety of peripherals,
which in turn contain multiple MMIO registers that again are
comprised of different bit fields, firmware typically interacts
with its hardware in hundreds to thousands of distinct ways.

In addition to the firmware-initiated MMIO, peripherals
can notify the firmware of asynchronous events, such as the
arrival of new data, via an interrupt request (IRQ). An IRQ

https://github.com/fuzzware-fuzzer/hoedur
https://github.com/fuzzware-fuzzer/hoedur

is a signal to the CPU raised by either a hardware peripheral
or the firmware. The CPU will suspend its current task and
switch to the corresponding interrupt service routine (ISR) to
process the request.

As a third means for peripheral device communication,
some embedded systems also use direct memory access
(DMA). As the name implies, this allows the peripheral to
read and write physical memory without CPU involvement.
This works asynchronously to the firmware executing code on
the microcontroller unit (MCU), is used for high-throughput
devices, and is coordinated via MMIO and interrupts.

2.3 Rehosting-based Firmware Fuzzing

Firmware Rehosting describes the process of executing a
firmware image in a virtual environment outside of its origi-
nal physical device [55]. Successfully rehosting a firmware
image requires the environment to mimic the behavior of the
different physical hardware peripherals. More specifically, the
rehosting environment needs to provide the communication
mechanisms introduced previously, i. e., it needs to generate
values for loads from MMIO registers, raise interrupts, and
fill DMA input buffers with data.

As previous work has demonstrated, it is possible to pro-
vide a thin emulation layer and use fuzzer-generated input to
approximate the peripheral device behavior for dynamic anal-
ysis [18, 47, 60]. This approach is appealing for broad testing,
as this generic type of rehosting does not require specialized
hardware or target-specific emulators and, thus, scales well
with general-purpose computation resources.

Recent rehosting environments [18, 47, 60] allow a fuzzer
to approximate peripheral device behavior by consuming flat
fuzzing input in a streaming manner. Whenever the firmware
communicates with its peripherals, e. g., by loading an MMIO
register or reading from a fresh DMA buffer, the emulator
draws the next required number of bytes from the fuzzer’s
binary input file. The emulator interprets these next bytes as
the peripheral’s response. This makes state-of-the-art fuzzers
straightforward to integrate, as the emulator can act towards
the fuzzer as an ordinary application. Like a command-line
program, the emulator accepts a flat binary input file, reads
from it, and consumes its contents piece by piece to sequen-
tially respond to peripheral accesses.

3 Firmware Input Representation

To motivate why the current approach of processing fuzzer
input falls short, we first need to discuss how firmware pro-
cesses the input from its peripherals. We then analyze how
the ad-hoc integration via flat inputs translates into firmware
behavior and how this flat input representation impacts the
fuzzer’s ability to apply meaningful mutations and explore
firmware behavior effectively. We then identify underlying

1 int main() {
2 while (true) {
3 Temperature::manage_heater();
4 GCodeQueue::advance();
5 }
6 }
7

8 void isr_usart() {
9 /* Check data availability */

10 if(usart_MMIO->SR & USART_SR_RXNE) {
11 /* Feed char into GCode ringbuf */
12 rb_push_insert(rb, usart_MMIO->DR);
13 }
14 }
15

16 void isr_timer() {
17 /* Periodic check: printhead height */
18 if (gpio_MMIO->IDR & ZFLAG) {
19 /* Handle printhead height trigger */
20 Planner::endstop_triggered(Z_AXIS);
21 }
22 }

Figure 1: Simplified source code of the Marlin 3D printer firmware [16]. The
main function handles heating and processes 3D printing GCode commands.
isr_usart provides GCode data to main, while isr_timer periodically
checks and manages the height of the printhead.

areas of improvement that guide our design of multi-stream
firmware fuzzing.

3.1 Firmware Input Processing

During its ordinary operation, the firmware runs in its main
execution context. The main context may consist of a single
loop or may be split into several tasks, each of which pro-
cesses its own type of hardware input. Whenever a peripheral
indicates an event by raising an IRQ, the main execution is
suspended, and an ISR is executed to process the interrupt.
After handling all pending interrupts, the firmware resumes
execution in its main context. During its execution in different
contexts, the firmware continuously accesses MMIO registers
to interact with its surrounding peripherals.

For our analysis and as a running example, we describe
a simplified version of the popular open-source 3D printer
firmware Marlin [16]. At its core, the firmware accepts serial
input in the form of GCode, which contains printing instruc-
tions. The firmware translates these instructions into actions
for its printhead. During operation, the firmware must also
track the movements of the printhead. Figure 1 outlines the
Marlin source code in a simplified form. The featured code
contains three execution contexts: the main loop (main) as
well as two interrupt handlers (isr_usart and isr_timer).
The main loop manages heating and processes GCode instruc-
tions. isr_usart adds the required input characters to the
GCode ring buffer, and isr_timer periodically checks move-
ment limits via a GPIO-connected magnetic sensor. In case a
limit is reached, the Marlin firmware executes a function to

Main

21 22 23 24

USART

R c ! R

Timer

! Z Z

0 1 2 3 4 5 6 7 8 9 10

Figure 2: Illustration of hardware accesses in a 3D printer firmware grouped
by execution context (its main loop and two ISRs). Each MMIO read is
represented by one box; values are colored by context. Transitions between
tasks caused by interrupts are shown as arrows. The values R, c and Z indicate
the USART status register data availability flag, a USART data byte, and the
Z-axis GPIO sensor reading, respectively. !R and !Z represent inversions.

handle the condition. Figure 2 visualizes how the firmware
accesses its peripheral MMIO registers over time from dif-
ferent execution contexts. As we can see, the firmware logic
switches between its different contexts, interleaving multiple
peripheral accesses over time.

3.2 Processing Flat Inputs

Given this example firmware, which interleaves its periph-
eral accesses, we now discuss how a flat, sequential input
is translated into responses from these peripherals. We then
analyze how a flat representation leaves the input unstable
under common mutations, i. e., how mutating a given part of
the input may change the meaning of its subsequent parts.

First, we define what it means for a flat input to remain
stable. We consider an input stable if the context in which
the different input parts are interpreted remains the same. For
example, assume that a sequence of bytes of an input to our
3D printer has been interpreted as GCode instructions. Now,
when the fuzzer mutates the input, the same bytes should
still be interpreted as GCode (if this is the case, the input
is stable). If, however, some of these GCode bytes are now
interpreted differently (e. g., as a GPIO output of a magnetic
sensor instead of GCode), the semantic meaning of the input
changes: The input likely no longer contains a valid GCode
sequence (we say the input is unstable).

As a result, for a flat input to remain stable, the following
properties need to hold:

1. The amount of accesses performed in a given context
needs to remain unchanged.

2. The order of accesses across different contexts needs to
remain unchanged.

If a given mutation changes the amount or the order of
accesses performed by the firmware, the flat input becomes
unstable. To see how simple mutations may cause a flat input
to become unstable in different ways, we consider a single bit
flip—a mutation that is commonly applied during fuzzing—
in two different locations of the example input. These two
mutations are visualized in Figure 3.

(a) Flat input representation (unmodified)

Input

21 ! Z 22 R c 23 Z ! R 24

(b) Modified: Change in access amount

Input

21 ! Z 22 ! R c 23 Z ! R 24

(c) Modified: Change in access order (via timing)

Input

21 Z 22 R c 23 Z ! R 24

0 1 2 3 4 5 6 7 8 9

Figure 3: Flat input representation of the hardware accesses shown in Figure 2.
Values are colored corresponding to the execution context in which they were
initially read. The colored background shows the execution context in which
they are read. A mismatch in colors indicates an unstable input. For the
unmodified input (a) the colors are identical. The effect of a single mutation
is shown in (b) and (c), with the modified value marked in red. In (b) one
less MMIO read is performed, therefore leaving the USART data byte to be
interpreted as a temperature value (green background). In (c) additional code
is executed, therefore the USART ISR immediately follows the timer ISR.

First, consider a fuzzer changing the response to the
first access of the USART status register SR performed in
isr_usart. Such a bit flip changes the semantic meaning
of the register value from indicating that a serial data byte
is available to indicating that no data byte is available. The
effects of this change are visualized in Figure 3(b): instead
of performing the additional access to the data register DR,
isr_usart will return immediately and resume execution in
the main loop without accessing the USART data register.
Now, the main loop (green background in between 4 and 5
on the x-axis) resumes and re-interprets what has previously
been a GCode character (red box) as a temperature value.
Following that, the input byte previously interpreted in the
main context will now be consumed within isr_timer (blue
background), and so forth. This is an example of a change in
the amount of accesses within an execution context leading
to input instability in an avalanche effect.

A second, more subtle, source of input instability is a
change in timing behavior. Changes in timing behavior affect
the order of accesses between execution contexts due to the
interleaved nature of peripheral accesses. Consider a bit flip
mutation changing the peripheral response of the printhead’s
height sensor register (IDR in isr_timer). Instead of indicat-
ing that the sensor has not yet triggered, the height is signaled
to be reached a single tick earlier. The effects of this change
are visualized in Figure 3(c). It indicates an endstop state
condition that has previously not been indicated at that point
in time. As a consequence, isr_timer now takes additional
time for executing further handling logic. During the extra
time it takes isr_timer to execute, the next USART interrupt
occurs, leading to isr_usart being executed directly after
isr_timer, without allowing main to consume the value 22.

As a result, isr_usart consumes the value 22 in its own con-
text (red background), leading to a similar avalanche effect
and input instability as in the previous example.

In these examples, we have seen different types of
avalanche effects that leave a flat input unstable. The un-
derlying assumption made by general-purpose fuzzers (which
does not generally hold for firmware) is the spatial locality of
logically-connected inputs. In other words, general-purpose
fuzzers assume that logically-connected parts of an input are
located close to each other in the input. If this is the case,
general-purpose mutations are effective. For example, if a
size field within a network packet is encoded in four consec-
utive bytes within the input, the typical arithmetic mutation,
which casts four bytes into an integer and subsequently decre-
ments it to provoke an integer underflow, works well. If, on
the other hand, no such spatial locality exists (i. e., the bytes
of the size field are spread across the input file), this mutation
becomes futile. The same concept applies to the avalanche
effects of input instability; the more logically-connected parts
of the input are spread across the mutated input file, the more
significant are the avalanche effects of input instability.

3.3 Shortcomings of Flat Inputs

As a consequence of processing inputs in a flat, sequential
manner, we identify three main challenges that block an ef-
fective fuzzer integration:

Loss of Progress. Due to the instability of flat inputs,
fuzzers often discard meaningful semantics while mutating.
As a result, it is difficult for a fuzzer to progress further, espe-
cially when firmware enforces complex requirements on the
format of its inputs.

Missing Type Information. The opaque nature of the flat
binary input hides information available to the emulator from
the fuzzer, as the fuzzer cannot relate a specific input byte to
type information. This includes the sizes of MMIO register
accesses and the order in which the accesses occur. Without
this information and feedback on how differently-typed inputs
are used, the fuzzer is unable to perform context- and type-
aware mutations.

Inapplicable Mutations. As firmware continuously inter-
leaves its accesses to peripherals, logically-connected parts
are scattered across the flat binary input. This invalidates many
established types of mutations, which implicitly assume that
logically-connected parts of the input are located at adjacent
input bytes. Examples include the insertion of tokens from a
dictionary and arithmetic operations on adjacent bytes, such
as a type cast of four bytes as an integer followed by a sub-
traction or an addition (which have shown to uncover issues
such as integer underflows/overflows).

Input

a0 a1 a2 a3
Main

10 11 12 13
USART

f0 f1 f2 f3
GPIO

Extended
FeedbackInput

Emulator

Fuzzer

Firmware

Figure 4: High-level overview of HOEDUR’s design. The emulator executes
the target firmware in an ISA emulator (dotted). Hardware accesses by the
firmware are answered by reading from the data stream that is dedicated to
the accessed device. The input file is provided by the fuzzer component. In
return, the emulator provides extended feedback to the fuzzer. This feedback
is collected during the execution by the emulator.

4 Design

To tackle these challenges, we present HOEDUR, the first
fuzzing approach that is aware of the underlying firmware
and capable of splitting firmware inputs into multiple strictly-
typed data streams. Compared to previous work that uses
general-purpose and firmware-unaware fuzzers, HOEDUR can
take firmware-specific execution feedback into account and
operate on a multi-stream input format.

Figure 4 shows an overview of our approach. The design
of HOEDUR features two distinct parts: First, we use an em-
ulator that provides firmware-specific feedback and serves
hardware values from a multi-stream input. Second, we de-
sign a firmware-aware fuzzer. In the following, we describe
these two aspects in detail and highlight the unique challenges
that we need to overcome with our design.

4.1 Emulator

Our emulator is based on an instruction set architecture (ISA)
emulator (dotted in Figure 4) in which we load and execute
the firmware under test. Whenever the firmware accesses a
hardware peripheral, the emulator determines the context of
that access during runtime. We define the access context to
consist of the triple of (i) the program counter, (ii) the address
of the requested MMIO register, and (iii) the access size.
Including the program counter in the access context implies
that instead of grouping data streams per accessed device or
MMIO register, we use the more fine-grained partitioning by
unique access location (i) of each MMIO register (ii). This is
based on the observation that MMIO registers may be used
for different purposes in different parts of the firmware code.

An example can be found in Section 3, where the firmware
accesses two types of registers from the USART peripheral;
the status register SR consists of bit flags, while the data reg-
ister DR provides GCode characters. Although not included in
the simplified source code shown in Figure 1, the firmware

may check different bit flags of the status register at different
code locations (data availability, error condition bits, . . .).

For each of these access contexts, we create an associated
data stream that provides peripheral response values. The
size of the access defines the basic (byte-level) data type of
the values contained within a stream, such that all streams
are strictly typed. For a more fine-grained (bit-level) type
granularity, we further integrate the MMIO access models
introduced in previous work into our emulator [47].

The collection of all data streams represents one multi-
stream input. As firmware is designed to run indefinitely
(note the while(true) loop in line 2 of Figure 1), we need
to determine when to stop running the emulator for a given
(multi-stream) input. We terminate the emulation run once
the firmware tries to access any data stream that is exhausted,
which means that all response values that the data stream
provides have already been consumed.

During each run, the emulator collects additional runtime
information that forms the basis for our fuzzer’s firmware-
aware feedback. First, we collect edge coverage, which we
modify in a firmware-specific way by eliminating edges that
result from transitions between the main execution context
and interrupt handling. This avoids distractions for the fuzzer,
as switches between the firmware main loop and interrupt han-
dling no longer introduce misleading coverage (such switches
can occur from anywhere in the main execution context, thus
quickly filling up the coverage bitmap). Second, we keep
track of firmware-specific execution metrics and define their
limits, including the maximum number of raised interrupts
and executed basic blocks. Inputs that lead the emulation run
to exceed these limits do not necessarily cause what is con-
sidered a timeout by general-purpose fuzzers. However, such
inputs still take comparatively long to execute, thus slowing
down fuzzing. In addition to saving time during emulation
runs, a firmware-aware fuzzer may utilize the feedback on
these execution metrics to optimize its input scheduling.

4.2 Mutating Multi-Stream Inputs

We base the mutation of our multi-stream inputs on well-
established mutation types. These include integer arithmetic,
insertions, and input splicing. We adapt these mutation types
to our multi-stream inputs in different ways:

Type-awareness. With each data stream containing typed
values (e. g., 8, 16, or 32-bit integers), we mutate discrete
values based on their actual type. This allows us, for example,
to insert a 32-bit value into a stream that is known to require a
32-bit integer. In contrast, previous fuzzers know neither the
correct location to insert into nor the correct data type to use.
Blindly speculating on both the location and data type leads
to the destructive avalanche effects for previous fuzzers that
we study in Section 3.2.

Cross-value mutations. As we have seen in Section 3.2,
it is common practice in general-purpose mutations to cast a
series of bytes into a larger integer and performing an arith-
metic operation, thus mutating subsequent bytes as a unit.
We generalize this concept to consecutive values within data
streams: We combine multiple consecutive values within a
data stream into a larger one, perform an arithmetic operation,
and write the result back as consecutive values.

As a firmware-specific adjustment, we combine values even
for wider value types (e. g., for data streams that hold 32-bit
integers). We combine such wider values by extracting a
single byte from each value (e. g., the least significant byte),
and then combining them as usual. Combining values larger
than an 8-bit integer is desirable for firmware fuzzing for the
following reason: While firmware typically stores data (such
as a network packet) into its parsing buffer byte-per-byte,
the firmware first needs to load each value from an MMIO
register. This MMIO register may be 32 bits wide, resulting
in a data stream that holds 32-bit integers.

Cross-stream mutations. For multi-stream inputs, certain
mutations such as input splicing (i. e., copying data from a
different input into the mutated one) are meaningful in two
dimensions: stream-oriented and chronological. For example,
we may wish to copy data of a specific type from one data
stream to another (relating to the 3D printer example, we may
want to copy the GCode from another input). Here, we can
simply copy consecutive values from one stream to another. In
other cases, we may prefer to copy all peripheral interactions
within a chronological time frame (e. g., to combine a specific
sequence of magnetic sensor readings and a corresponding
GCode snippet). For this reason, we introduce two modes
to each applicable mutation: mono (for a single stream) and
chrono (for a set of chronological interactions).

Input Extension. Recall that firmware is designed to run in-
definitely and, therefore, expects unlimited amounts of input.
It may also discover new access contexts over time, which re-
quires dynamically adding data streams. This is in contrast to
general-purpose fuzzing targets, which typically require a fi-
nite, often single input file. To successfully fuzz test firmware,
we need to balance both extremes: a very short input that
barely passes the firmware boot process, and an input of infi-
nite length. For newly discovered data streams, we provide
an initial set of random values. We also add a distinct muta-
tion with which the fuzzer instructs the emulator to provide a
number of random values after the multi-stream input would
normally have been exhausted. This extends the input by
extending its data streams. It is a further firmware-specific
addition that allows the emulation to progress and avoid sud-
den emulation stops in an interesting code location due to an
abrupt termination of the firmware input.

4.3 Scheduling Data Streams for Mutation
Before mutating an input, fuzzers naturally need to select
an input to mutate. For multi-stream inputs, we additionally
need to decide which data stream within a multi-stream input
we would like to mutate. Picking a data stream to mutate is
challenging for three reasons: (1) The number of data streams
is high, as firmware typically accesses a range of peripheral
registers, each from potentially multiple code locations. This
leads to hundreds or thousands of access contexts and, thus,
data streams. (2) Most data streams are undesirable to mutate.
The reason for this is that most streams represent status regis-
ters that do not contribute to meaningful firmware functional-
ity. While mutating these registers is important initially to find
proper low-level hardware states, mutating status registers be-
comes ineffective beyond a certain threshold. (3) A static
metric is insufficient to base our data stream scheduling on.
For example, data streams may be large, yet may not influence
a significant firmware state space (e. g., continuously-polled
status registers or data registers for which a driver stub exists
that reads from it but implements no logic). Data streams
may also be important initially, but become insignificant later
(e. g., status registers which are involved in the boot process
or hardware initialization).

For these reasons, we require our data stream mutation
scheduling mechanism to adapt over time. While initially
mutating each data stream regularly, it needs to eventually
prioritize data streams that hold meaningful data, such as the
GCode instruction data previously mentioned in Section 3.

4.3.1 Stream Selection

As a baseline strategy, we draw data streams from their size-
weighted distribution. This strategy is based on our empirical
observation that the size of a data stream often (even if not
always—as previously discussed) correlates with the underly-
ing firmware state space that the data stream can influence.

Unfortunately, solely relying on data stream sizes to deter-
mine stream-picking probabilities bears the risk of the fuzzer
being sidetracked by frequent yet meaningless peripheral reg-
ister accesses. This is why we further use probability matching
(which is also known as Thompson Sampling [10]) to adapt
the probability of selecting a data stream for mutation with its
success rate in discovering new coverage. More precisely, we
calculate the ratio between the number of times a data stream
has been mutated and the number of times a mutation has con-
tributed to finding new coverage within the given input. For
example, a data stream that is two times as likely to produce
new coverage when mutated than another data stream will
have its probability scaled by twice as much.

To avoid overfitting to a particular set of data streams, 80%
of the data streams are sampled by the Thompson sampling
strategy and 20% by uniform random selection. This ensures
that the fuzzer picks all data streams from time to time regard-
less of their combined sizes and success rates.

4.3.2 Successor Stream Selection

We further adapt the stream selection schema to allow the
fuzzer to mutate well-structured inputs effectively: With a
50% percent chance, we continue to mutate the data stream
that was previously selected. This way, we introduce a degree
of clustering whenever a data stream is mutated. This is driven
by the insight that firmware processes multiple individually
formatted input types (represented by data streams) at the
same time. For each data stream, a single mutation alone
may be insufficient to derive a new, interesting input within
the format that it (implicitly) encodes. For example, a 3D
printer accepts GCode-formatted serial data to determine its
printing activities. As GCode itself is a well-structured format,
a given piece of GCode may require multiple mutations to be
transformed into another meaningful GCode instruction.

4.4 Comparison to General-Purpose Fuzzing
In summary, our design proposes the following improvements
compared to state-of-the-art work on firmware fuzzing that
integrate a general-purpose fuzzer via flat binary inputs:

1. Firmware-aware fuzzing (in the form of firmware-
adapted coverage feedback and execution metrics, as
well as a new input extension mutation that addresses
the infinite runtime of firmware)

2. A multi-stream input format and stream mutation modes

Combining these techniques allows us to design a fuzzer
that is well suited for analyzing firmware. It also allows us
to incorporate advanced mutation techniques from general-
purpose fuzzing into our firmware testing.

5 Implementation

Our implementation consists of two components: an emulator
and our firmware-aware fuzzer HOEDUR. While the fuzzer
logic is platform-independent, our prototype emulator targets
ARM Cortex-M MCUs, as the platform is widely adopted and
enables the comparison of our approach with state-of-the-art
work. We will open-source our prototype implementation at
https://github.com/fuzzware-fuzzer/hoedur.

5.1 Emulator
The emulator consists mainly of the ISA emulator and addi-
tional logic to respond to peripheral accesses given a multi-
stream input. We adopted the existing system emulation of
QEMU [4], a widely-used system emulator for multiple ISAs,
as the core of HOEDUR’s emulator component.

During our implementation, we made an effort to keep
the modifications of QEMU itself as small as possible to
allow for rebasing onto new QEMU versions in the future
(205 lines added, 101 lines deleted). This is mainly achieved

https://github.com/fuzzware-fuzzer/hoedur

through building QEMU as a dynamically linked library and
implementing the outside emulator logic (such as interpreting
multi-stream inputs) separately in Rust [38].

We use QEMU with a dynamically configured machine that
has its memory regions set up. For memory regions that are
configured as MMIO, we add emulator callbacks to handle
these peripheral accesses. We inject a callback at the start of
each QEMU translation block to gather coverage informa-
tion and fully control the execution. We use this callback to
update the coverage bitmap and control execution timings.
This includes enforcing execution limits and injecting inter-
rupts deterministically. To avoid expensive process forks, we
use snapshots of the emulator state, including its CPU and
memory, to facilitate fast restores.

We sometimes need to extend an input with random data.
This occurs when a newly discovered data stream is added
or due to the explicit mutation described in Section 4.2. To
extend an input, we set a limit on how many new random
values are to be added to exhausted data streams in the current
emulation run. We decrement this limit whenever a random
value is generated and conclude the emulation run after the
limit reaches zero.

5.2 Fuzzer

The overall fuzzer design is based on libFuzzer [37] with some
aspects borrowed from AFL [58] and AFL++ [20]. Notable
features that were adopted from libFuzzer contain various
input mutators and the ENTROPIC input energy as introduced
by Böhme et al. [5]. In total, our fuzzer is implemented in
about 13,500 lines of Rust code.

We also adopt AFL’s mutation stacking strategy by apply-
ing 4, 8, 16, or 32 mutations before executing each input. As
described in Section 4.3, we adapt the probability of selecting
a given data stream for mutation based on how successful
it is in finding new coverage. This requires us to determine
whether a mutation on a given data stream contributed to pro-
ducing the new coverage. We post-process interesting inputs
that produce new coverage to reduce noise within this metric.
Before committing it to the corpus, we rerun the input multi-
ple times while progressively pruning stacked mutations that
do not contribute to the new coverage.

6 Evaluation

We evaluate the effectiveness of our prototype implementation
of HOEDUR by considering the following research questions:
RQ 1 How does HOEDUR compare to state-of-the-art

firmware fuzzers?
RQ 2 How effective are multi-stream inputs compared to a

flat, single-stream input representation?
RQ 3 Can multi-stream-aware fuzzing take advantage of ad-

vanced mutations such as dictionaries?

RQ 4 Does HOEDUR find previously unknown vulnerabili-
ties in practice?

To answer these questions, we design and conduct four
different experiments.

6.1 Setup

We first outline our setup, including the used hardware,
fuzzers, and firmware targets.

Hardware Configuration. All our experiments use the
same hardware configuration, i. e., two Intel Xeon Gold 5320
CPUs @ 2.20GHz (52 physical cores in total), 256 GB of
RAM, and SSD memory for storage.

Fuzzers. Besides HOEDUR itself, our evaluation uses the
following fuzzers: FUZZWARE, SINGLE-STREAM-HOEDUR,
HOEDUR+DICT, and SINGLE-STREAM-HOEDUR+DICT.
FUZZWARE [47] represents the state-of-the-art in rehosting-
based embedded firmware fuzzing, making it the best-
performing choice to compare against. SINGLE-STREAM-
HOEDUR is a version of HOEDUR that does not employ
multi-stream inputs but instead consumes input in a tradi-
tional flat manner. Still, it is firmware-aware, i. e., it uses our
improvements regarding coverage feedback and execution
metrics/limits, and it features the input extension mutation.
The only difference to HOEDUR is its inability to associate
access contexts with separate data streams. HOEDUR+DICT
and SINGLE-STREAM-HOEDUR+DICT are variants of the re-
spective fuzzers equipped with a dictionary to showcase how
multi-stream inputs impact such advanced mutation strategies.

Targets. We use two different sets of real-world firmware.
Our first set is based on FUZZWARE [47]. The FUZZWARE
target set consists of 12 samples that are based on Contiki-
NG [14] and Zephyr [59]. These targets implement different
types of network stacks and protocols (e. g., Bluetooth Low
Energy, IEEE 802.15.4, 6LoWPAN, IPv6, and SNMP). Each
target in this data set contains a new bug that FUZZWARE
found prior to its release and for which a CVE has been as-
signed. We use this set to investigate HOEDUR’s capability of
finding vulnerabilities in real code compared to the state-of-
the-art fuzzer FUZZWARE. Second, we use an established set
of firmware targets following µEMU [60]. It includes samples
from P2IM [18], HALUCINATOR [13], PRETENDER [23],
and WYCINWYC [40]. Thus, this sample set covers a diverse
range of applications, OS libraries, and hardware platforms.
Some of the targets within the µEMU target set contain bugs
that trivially allow an input to take control of the firmware
program counter. An example is a stack-based buffer overflow
vulnerability in RF_Door_Lock. As controlling the program
counter allows a fuzzer to produce invalid coverage within its
target, a valid coverage comparison is impeded. For this rea-
son, we fix the affected bugs by introducing binary patches to
these targets. We use the patched versions of the µEMU targets
for all fuzzers in our experiments. We will open source these
patches to the firmware fuzzing community alongside our

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200
CVE-2020-12140

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200

1,400

1,600
CVE-2020-12141

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000
CVE-2020-10064

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200

1,400

1,600
CVE-2020-10065

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200

1,400
CVE-2020-10066

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

3,000

3,500
CVE-2021-3319

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

3,000

3,500
CVE-2021-3320

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

3,000

3,500
CVE-2021-3321

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000
CVE-2021-3322

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

3,000

3,500
CVE-2021-3323

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

3,000
CVE-2021-3329

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000
CVE-2021-3330

FuzzwareHoedur Single-Stream-Hoedur

5/5

5/5

1/5

5/5

5/5

3/5

5/5

5/5

5/5

5/5

5/5

5/5

5/5

5/5

5/5

5/5

5/5

5/5

5/5

5/5

5/5

5/5

0/5

0/5

5/5

4/5

5/5

5/5

1/5

3/5

5/5

0/5

0/5

5/5

4/5

0/5

#
C

ov
er

ed
 B

as
ic

 B
lo

ck
s

Time (hh:mm)

Figure 5: Coverage achieved by HOEDUR, SINGLE-STREAM-HOEDUR, and FUZZWARE on targets containing a CVE over the course of 24 hours. We plot the
median and 66% interval for the five runs per fuzzer. The explosion symbol (, , or) denotes the point in time at which a run has triggered the CVE.

artifacts. To set up these targets for fuzzing in HOEDUR, we
re-use equivalents to the configurations published alongside
the FUZZWARE experiments. The FUZZWARE configurations
for the µEMU targets contain memory mappings (i. e., ranges
of RAM memory, MMIO registers, and the firmware ROM
image) as well as a common interrupt raising strategy that
periodically raises enabled interrupts in a round-robin fash-
ion. For FUZZWARE’s CVE target set, these configurations
specify, alongside the basic configurations, a set of locations
at which the emulation of an input is concluded (e. g., the
arch_system_halt function in Zephyr) and a set of func-
tions to be skipped (e. g., z_impl_k_busy_wait). To ensure
a fair comparison, we wrote a tool that automatically converts
FUZZWARE configurations to configurations that are compat-
ible with HOEDUR. We do not add any further (potentially
optimizing) configuration options. Providing these configura-
tions is the only manual effort required to set up the evaluated
firmware targets in HOEDUR.

6.2 Bug Finding Ability
To answer RQ 1, we evaluate how HOEDUR compares with
FUZZWARE and SINGLE-STREAM-HOEDUR in terms of its
ability to find bugs and produce code coverage. First, we run

each fuzzer for 24 hours on the full set of firmware that was
published alongside FUZZWARE to reproduce the CVEs that
FUZZWARE found. We run each fuzzer five times as recom-
mended by Klees et al. [32], with each run being assigned
four physical CPU cores. We collect both the code coverage
and CVE vulnerability discovery timings for each run. We
implemented bug detection hooks for each target to determine
the time at which a fuzzer triggered the CVE vulnerability.
More precisely, after the fuzzing campaign has concluded, we
activate the bug detection hook and rerun all crashing inputs
that the respective fuzzer produced during each run. Using
the detection hook, we can identify the first crashing input for
which a bug trigger has been detected. We will open-source
these detection hooks alongside our artifacts.

As can be seen in the plotted results shown in Fig-
ure 5, HOEDUR ties or outperforms FUZZWARE and SINGLE-
STREAM-HOEDUR in terms of coverage on all targets. In
cases where the coverage is similar, HOEDUR achieves it
earlier. On average, HOEDUR finds 12% more coverage than
FUZZWARE. We also observe that HOEDUR triggers the CVEs
earlier than FUZZWARE. Interestingly, FUZZWARE fails to
trigger the CVEs within 24 hours in nearly 40% of cases (23
not triggered out of 60). In contrast, HOEDUR triggers the
CVEs within 24 hours in all cases.

Table 1: CVE discovery timings of known CVEs within 15 days. We round
seconds to the closest minute and report the timings as days:hours:minutes.
Based on the mean, we present the factor of how much faster a fuzzer is in
Fac. (and mark the better fuzzer in bold). A fuzzer may fail to find the CVE
within 15 days (see #Hit column); in this case, we assume it triggers the
CVE at 15 days and 1 second and represent these runs as “—”.

CVE-20.. Fuzzer #Hit Min Max Median Mean Fac.
dd:hh:mm dd:hh:mm dd:hh:mm dd:hh:mm

20-12140
FUZZWARE 3/5 00:02:04 — 03:08:30 07:06:27 550
SINGLE-STREAM-HOEDUR 5/5 00:02:12 00:09:49 00:03:53 00:05:17 17
HOEDUR 5/5 00:00:16 00:00:24 00:00:17 00:00:19

20-12141
FUZZWARE 4/5 00:05:40 — 00:20:46 03:14:60 236
SINGLE-STREAM-HOEDUR 5/5 00:01:29 00:02:40 00:02:38 00:02:22 6.4
HOEDUR 5/5 00:00:17 00:00:32 00:00:18 00:00:22

20-10064
FUZZWARE 5/5 00:00:51 00:04:50 00:02:28 00:02:59 5.0
SINGLE-STREAM-HOEDUR 5/5 00:01:03 00:02:14 00:01:24 00:01:29 2.5
HOEDUR 5/5 00:00:13 00:01:12 00:00:23 00:00:36

20-10065
FUZZWARE 5/5 00:00:06 00:00:13 00:00:07 00:00:08 0.77
SINGLE-STREAM-HOEDUR 5/5 00:00:08 00:00:09 00:00:08 00:00:08 0.8
HOEDUR 5/5 00:00:09 00:00:12 00:00:10 00:00:11

20-10066
FUZZWARE 5/5 00:00:07 00:00:13 00:00:09 00:00:10 0.32
SINGLE-STREAM-HOEDUR 5/5 00:00:21 00:01:57 00:01:06 00:01:07 2.2
HOEDUR 5/5 00:00:13 00:00:41 00:00:36 00:00:30

21-3319
FUZZWARE 5/5 00:00:19 00:01:27 00:00:36 00:00:43 8.6
SINGLE-STREAM-HOEDUR 5/5 00:00:09 00:00:28 00:00:11 00:00:14 2.8
HOEDUR 5/5 00:00:02 00:00:09 00:00:04 00:00:05

21-3320
FUZZWARE 5/5 00:00:18 00:01:25 00:00:53 00:00:49 8.0
SINGLE-STREAM-HOEDUR 5/5 00:00:04 00:00:48 00:00:20 00:00:21 3.5
HOEDUR 5/5 00:00:05 00:00:07 00:00:06 00:00:06

21-3321
FUZZWARE 2/5 01:23:15 — — 10:11:52 25
SINGLE-STREAM-HOEDUR 5/5 01:00:10 08:03:37 01:17:04 02:20:38 6.7
HOEDUR 5/5 00:06:52 00:14:09 00:10:18 00:10:16

21-3322
FUZZWARE 5/5 00:01:13 00:23:00 00:04:03 00:08:53 5.3
SINGLE-STREAM-HOEDUR 5/5 00:00:53 01:11:34 00:01:57 00:09:59 6.0
HOEDUR 5/5 00:00:07 00:03:03 00:01:41 00:01:40

21-3323
FUZZWARE 5/5 00:09:05 04:17:58 00:15:11 01:11:59 3.0
SINGLE-STREAM-HOEDUR 5/5 00:19:45 02:09:34 01:12:46 01:11:53 3.0
HOEDUR 5/5 00:04:08 00:21:48 00:14:11 00:12:04

21-3329
FUZZWARE 3/5 01:06:38 — 06:02:13 07:20:15 44
SINGLE-STREAM-HOEDUR 5/5 01:00:03 11:19:50 08:04:04 06:17:37 38
HOEDUR 5/5 00:01:20 00:06:57 00:04:19 00:04:18

21-3330
FUZZWARE 1/5 08:23:12 — — 13:19:02 32
SINGLE-STREAM-HOEDUR 5/5 00:04:50 01:05:52 00:13:18 00:14:13 1.4
HOEDUR 5/5 00:02:03 00:16:18 00:10:59 00:10:26

To analyze these CVE discovery timings in more detail,
we repeat the experiment but let the fuzzers run for 15 days
instead of 24 hours. The minimum, maximum, median, and
mean times of triggering the CVEs are depicted in Table 1. As
this table shows, HOEDUR is significantly more effective and
faster in triggering the CVEs than FUZZWARE for all but two
targets (CVE-2020-10065 and CVE-2020-10066). For these
two targets, both HOEDUR and FUZZWARE discover the CVE
within the first hour in all cases. Interestingly, FUZZWARE
fails to trigger the CVE for some runs even after running for
15 days. This is in stark contrast to HOEDUR, for which the
longest run took 25 hours (CVE-2021-3323).

While analyzing the crashes found by HOEDUR, we further
investigate whether HOEDUR identified additional, previously
unknown bugs in the FUZZWARE target set, which have not
been reported by previous work. To this end, we manually
triaged crashes that were not caught by our CVE bug detection
hooks, and we iteratively added detection hooks. Our triag-
ing uncovered a total of 8 bugs that have not been detected
by previous work and had been unfixed in the most recent
versions of the underlying operating systems. We reported
these bugs to their respective vendors in a coordinated way.

Table 2: Timings of the discovery (within 15 days) of additional, previously
unknown bugs in the Fuzzware target set. The format is equivalent to Table 1.

CVE-20.. Fuzzer #Hit Min Max Median Mean Fac.
dd:hh:mm dd:hh:mm dd:hh:mm dd:hh:mm

23-0397
FUZZWARE 5/5 00:21:24 12:14:17 02:11:54 04:05:46 47
SINGLE-STREAM-HOEDUR 5/5 00:11:24 11:20:09 01:15:60 03:12:18 39
HOEDUR 5/5 00:00:59 00:02:53 00:02:51 00:02:11

23-1422
FUZZWARE 0/5 — — — — 131
SINGLE-STREAM-HOEDUR 0/5 — — — — 131
HOEDUR 5/5 00:00:33 00:05:17 00:01:57 00:02:45

23-1423
FUZZWARE 4/5 01:22:25 — 05:20:03 07:22:14 48
SINGLE-STREAM-HOEDUR 3/5 00:10:05 — 01:12:00 06:13:55 40
HOEDUR 5/5 00:02:27 00:06:49 00:03:00 00:03:57

23-1901
FUZZWARE 4/5 00:00:16 — 00:21:13 03:16:05 0.34
SINGLE-STREAM-HOEDUR 0/5 — — — — 1.4
HOEDUR 2/5 01:10:22 — — 10:17:21

23-1902
FUZZWARE 1/5 01:20:45 — — 12:08:57 0.98
SINGLE-STREAM-HOEDUR 0/5 — — — — 1.2
HOEDUR 1/5 03:00:38 — — 12:14:32

23-23609
FUZZWARE 0/5 — — — — 818
SINGLE-STREAM-HOEDUR 5/5 00:04:44 01:03:36 00:13:33 00:15:17 35
HOEDUR 5/5 00:00:20 00:00:34 00:00:28 00:00:26

23-28116
FUZZWARE 1/5 13:15:30 — — 14:17:30 231
SINGLE-STREAM-HOEDUR 5/5 00:04:53 01:03:43 00:10:55 00:14:48 9.7
HOEDUR 5/5 00:00:35 00:02:60 00:01:01 00:01:32

23-29001
FUZZWARE 0/5 — — — — 51
SINGLE-STREAM-HOEDUR 5/5 00:22:39 05:05:56 01:18:15 02:05:42 7.6
HOEDUR 5/5 00:02:34 00:16:44 00:05:35 00:07:04

Table 2 shows the discovery timings of these bugs. Overall,
FUZZWARE found 5 of the 8 previously unknown bugs within
5 full 15-day iterations. On average, HOEDUR took 166x
less time to discover each bug. For 24-hour runs, FUZZWARE
would have found 2 out of 8 bugs within 5 iterations, while
HOEDUR would have found 6 out of 8.

RQ 1 – State of the Art: HOEDUR achieves better code
coverage than the state-of-the-art fuzzer FUZZWARE
and—at the same time—triggers the CVE vulnerabilities
significantly faster. Additionally, it found several new
bugs in already fuzzed firmware.

6.3 Code Coverage: Established Data Set
To confirm whether our initial observation about HOEDUR’s
ability to find more code coverage (RQ 1) scales to a larger set
of targets, we design a second experiment. Here, we measure
the coverage for HOEDUR and FUZZWARE on the dataset used
by µEMU [60]. To further analyze the impact of our most sig-
nificant design decision, multi-stream inputs (RQ 2), we again
include SINGLE-STREAM-HOEDUR. We run each fuzzer ten
times and plot the median as well as the 66% interval in Fig-
ure 6. For brevity, we only plot the eight most complex targets
(more specifically, the targets for which the fuzzers found the
most coverage). Plots for the remaining targets of the dataset
can be found in Figure 8 in the Appendix.

As Figure 6 shows, both HOEDUR and SINGLE-STREAM-
HOEDUR clearly outperform FUZZWARE. This is an inter-
esting result, indicating that our fuzzer’s awareness of the
underlying firmware is beneficial. We analyzed two examples
where the single-stream version SINGLE-STREAM-HOEDUR
clearly outperforms FUZZWARE: 6LoWPAN Receiver and

#
C

ov
er

ed
 B

as
ic

 B
lo

ck
s

Time (hh:mm)

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000
HALucinator/6LoWPAN Receiver

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

3,000
P2IM/CNC

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

3,000

3,500
P2IM/Gateway

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

P2IM/Soldering Iron

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200
Pretender/Thermostat

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500
WYCINWYC/XML Parser

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500
uEmu/3Dprinter

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

3,000

3,500
uEmu/Zepyhr SocketCan

FuzzwareHoedur Single-Stream-Hoedur

Figure 6: Coverage achieved by HOEDUR and FUZZWARE on a diverse set of targets for ten 24-hour runs. We plot the median and 66% interval.

Soldering Iron. We found that due to the frequent ex-
ecution context switches that occur during interrupt han-
dling, FUZZWARE misleadingly indicates a lot of new cov-
erage, which distracts its fuzzer. As we prune these cover-
age edges for interrupts (see Section 4.1), this is not the
case for SINGLE-STREAM-HOEDUR. Consequently, SINGLE-
STREAM-HOEDUR explores the firmware more quickly and
without getting distracted by superfluous coverage. While
FUZZWARE catches up over time, it requires much time to do
so. One notable exception, where firmware awareness does
not help much is Zephyr Socket Can, where FUZZWARE
outperforms SINGLE-STREAM-HOEDUR (but not HOEDUR)
by a small margin. In this case, the target contains a common
interrupt handler wrapper function, which naturally minimizes
the number of distinct misleading coverage edges. HOEDUR,
with its ability to assign a separate data stream to each access
context, performs best overall. Especially for 3Dprinter, it
finds more than five times the coverage of FUZZWARE. On
average, HOEDUR finds 32.5% more coverage (and SINGLE-
STREAM-HOEDUR 9.6% more coverage) than FUZZWARE.

This validates our response to RQ 1: HOEDUR outperforms
the state-of-the-art fuzzer FUZZWARE, both in terms of code
coverage and especially in its ability to trigger bugs quickly.

In the following, we study the difference between HOEDUR
and SINGLE-STREAM-HOEDUR to answer RQ 2. Interest-
ingly, the multi-stream input representation is highly benefi-
cial in some cases (3Dprinter and XML Parser), but seems
to provide little benefit in other cases (6LoWPAN Receiver
and Soldering Iron). Manually inspecting these targets,
we found these target-specific differences to result from a
concept we discussed in Section 3.2, namely, the spatial lo-
cality of logically-connected parts of the input. For 6LoWPAN

Receiver and Soldering Iron, the contained firmware
logic consumes its inputs in chunks. Their respective main
input functions, trx_sram_read and HAL_I2C_Mem_Read,
read their input into a buffer in a loop without changing the
execution context. This leads to a natural spatial locality for
these two targets. Consequently, a flat single-stream approach
does not suffer from the drawbacks discussed in Section 3. In
contrast, 3Dprinter represents the complete opposite: Here,
the serial GCode characters are read one byte at a time, where
a byte is added each time the USART interrupt occurs. This
leads to the GCode characters being spread across the flat
input, making it prohibitively hard for a fuzzer to mutate it
effectively without the concept of multi-stream inputs.

RQ 2 – Multi-stream Inputs: Using multi-stream in-
puts and its differentiation of access contexts provides
robust coverage for all the targets we explored. Depend-
ing on how a given firmware processes its inputs under
the hood, our multi-stream input representation allows
the fuzzer to vastly outperform its flat input equivalent
(finding 3.86 times the coverage of SINGLE-STREAM-
HOEDUR for 3Dprinter and 20.9% more in general).

6.4 Advanced Mutations via Dictionaries

The awareness of multi-stream inputs not only benefits the
fuzzer by itself, but it also unlocks its capabilities to work
with advanced mutations. One compelling way of improving
fuzzing performance on targets expecting a large number of
specific (string) tokens is using dictionaries.

To verify whether multi-stream inputs allow the fuzzer
to use such advanced mutation types, we run HOEDUR

#
C

ov
er

ed
 B

as
ic

 B
lo

ck
s

Time (hh:mm)

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200

1,400

1,600
P2IM/Console

00:00 06:00 12:00 18:00
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000
uEmu/Zepyhr SocketCan

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400
uEmu/utasker MODBUS

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400
uEmu/utasker USB

Hoedur Hoedur+Dict Single-Stream-Hoedur+DictSingle-Stream-Hoedur

Figure 7: Coverage achieved by HOEDUR+DICT and SINGLE-STREAM-
HOEDUR+DICT (compared to the baseline, HOEDUR) on four targets per-
forming string matching to different degrees. We performed ten runs of 24
hours each. We plot the median and 66% interval for each fuzzer.

and SINGLE-STREAM-HOEDUR both without and with ac-
cess to the same target-specific dictionaries (the latter
variants are called HOEDUR+DICT and SINGLE-STREAM-
HOEDUR+DICT, respectively). We automatically generated
these dictionaries by extracting tokens from the respective
firmware ROM image. The tokens were created based on
each sequence of printable, newline, or tabulator characters
with a length of 4 to 64 bytes, of which 75% represent al-
phanumeric or punctuation characters. Note that we have
not applied these dictionaries in the previous experiments to
ensure a clean comparison between the fuzzers.

We run each fuzzer ten times on four targets that make use
of string matching: Console, Zephyr SocketCan, utasker
modbus, and utasker USB. Figure 7 shows the median cov-
erage and 66% intervals. Evidently, applying a dictionary
increases the firmware coverage for fuzzing with a multi-
stream input representation in every case (HOEDUR+DICT
outperforms HOEDUR in every case, on average by 16.2%).
At the same time, dictionary mutations provide only a much
more limited advantage for the single-stream case; SINGLE-
STREAM-HOEDUR+DICT slightly outperforms SINGLE-
STREAM-HOEDUR on two targets and ties with it in the other
cases. On average, SINGLE-STREAM-HOEDUR+DICT finds
2.8% more coverage than without a dictionary, a much smaller
difference than for HOEDUR.

RQ 3 – Advanced Mutations: Our multi-stream input
representation allows firmware fuzzing to effectively
use advanced mutations, which have previously been of
limited use in an ad-hoc flat input fuzzer integration.

6.5 Finding Unknown Vulnerabilities

In Section 6.2, we have shown that HOEDUR is able to
find new bugs, even previously unknown ones in the exact
firmware images that have been tested in previous work. We
expand on this by performing additional testing. We use HOE-
DUR to fuzz additional targets in their most recent versions.
We include different network stack implementations of four
popular projects in this experiment: Zephyr OS, Contiki-NG,
RIOT OS, and LoRaMac-node. Note that FUZZWARE was
previously used to test Zephyr and Contiki-NG.

Based on the fuzzing results of these new targets, we dis-
closed an additional 15 previously unknown bugs to their re-
spective vendors, which results in an overall total of 23 newly
disclosed vulnerabilities. Table 3 in the Appendix provides
an overview of these vulnerabilities.

In the following, we analyze the impact of our multi-stream
input representation on HOEDUR’s ability to discover bugs
more quickly than previous work. We consider three case stud-
ies, each from a different category: 3Dprinter from µEMU (see
Section 6.3), CVE-2021-3329 from the FUZZWARE target set
(Section 6.2), and CVE-2023-1422, which is a previously
unknown bug in Zephyr found by HOEDUR (see Table 2).

uEmu/3Dprinter. In this target, the 3Dprinter GCode in-
put is read by the firmware byte by byte, while each byte is
added to the input buffer during handling of a separate in-
terrupt. This results in the GCode bytes being spread across
the input file, which breaks the spatial locality of the GCode
input bytes in a flat binary input format, making it prone to
destructive avalanche effects. HOEDUR, in contrast, holds
these GCode input bytes in a separate data stream and is thus
able to perform mutations unimpeded.

CVE-2021-3329. To trigger this vulnerability, the fuzzer
must craft a series of Bluetooth HCI frames to correctly ini-
tialize the Bluetooth stack. Considering a previous input that
already contains a valid part of the initialization sequence,
deriving an improved input is difficult for a flat input format:
A set of mutations must first be fortunate enough to introduce
the necessary changes to one or more HCI frames. It also
needs to leave the existing HCI frames intact, which is un-
likely for a set of stacked mutations on a flat input. HOEDUR’s
multi-stream input format, on the other hand, will not acciden-
tally destroy existing HCI frames with unrelated mutations.

CVE-2023-1422. This bug is a race condition in the in-
put/output behavior of the Zephyr Bluetooth stack. Triggering
it introduces an additional layer of complexity: It requires spe-
cific HCI frames to be sent in a particular order and in quick
succession. Thus, a rather large input needs to be mutated and
needs to stay intact, meaning that the avalanche effect needs
to be fully avoided.

RQ 4 – New Bugs: HOEDUR has found 23 previously
unknown vulnerabilities in firmware, some of which
has been fuzzed extensively by previous work. These
findings underline the capability of HOEDUR to find
security-relevant bugs.

7 Discussion

In the following, we discuss our multi-stream approach and
how our prototype could be integrated into other work.

Avalanche Effect. In Section 3.2, we described the destruc-
tive avalanche effect that causes mutations of a flat input repre-
sentation to discard fuzzing progress. We see this effect with
virtually any firmware. Its impact, however, depends on how
firmware reads its input and on the size, complexity, and depth
of the structure that the input must maintain. If firmware logic
is trivial (as is the case for P2IM/Heat_Press or P2IM/PLC),
any input representation quickly explores all firmware behav-
ior. However, this is different for more complex issues: Trig-
gering CVE-2021-3321 requires multiple matching 6LoW-
PAN fragments and, similarly, CVE-2021-3329 requires mul-
tiple HCI setup messages to stay intact. While a fuzzer can
still find more shallow bugs despite this avalanche effect,
multi-stream inputs trigger bugs more quickly and reliably,
even if they are harder for a fuzzer to discover.

It is worth noting that there might be situations where the
instability introduced by the avalanche effect may provide
some benefits. For example, it may be beneficial in certain
situations to group all values of a status register into a single
stream instead of creating a separate stream for each unique
access to the status register. Although we have empirically
found such situations to have little impact, future work may
address these edge cases.

Integration of Orthogonal Approaches. While the multi-
stream input format is strongly coupled with our firmware-
aware fuzzer, the integration of an emulator is rather loosely
coupled to allow for adopting other improvements. We added
a flexible layer to the data stream handling of our design
to easily integrate modeling approaches of other work. As
described in Section 4, we demonstrate this by integrating
the models introduced by FUZZWARE [47], which further in-
creased HOEDUR’s effectiveness. Furthermore, the firmware-
aware feedback from the emulator is used optionally; the
emulator implementation is only required to provide a cover-
age bitmap and serve our multi-stream input. It is therefore
possible to replace the emulator implementation completely
and adapt other work to use HOEDUR.

8 Related Work

In recent years, fuzzing has been a very active field of research,
mainly started by the release and great success of the coverage-

guided greybox fuzzer AFL [58]. Follow-up work has further
improved it or used its concepts to create new fuzzers such as
libFuzzer [37]. Improvements include mutations [1, 2, 24, 42,
44], scheduling algorithms [5–7, 9, 46, 54], and feedback [21,
27, 35, 36]. Other work has focused on increasing the input
quality to overcome roadblocks by using taint tracking [12,45]
or symbolic execution [22, 51, 56]. While many fuzzers target
only desktop applications, there are adoptions to new fields
such as kernels [26, 50, 53] and hypervisors [8, 25, 43, 48, 49].
None of these improvements target monolithic firmware.

As outlined in this work, our approach automatically subdi-
vides the firmware input into multiple data streams. Grouping
data into independent streams and exposing these streams sep-
arately to the fuzzer potentially opens up firmware fuzzing to
these approaches. Previous work also operates on inputs con-
taining different logical units [3,19,44,49,53], albeit targeting
different domains. Closer to hardware, a recent approach pro-
posed using multiple streams for USB kernel fuzzing [31].
Other than HOEDUR, this work utilizes Linux kernel abstrac-
tions and requires previous knowledge of the different input
channels, which is not feasible for monolithic firmware.

Previous work in firmware fuzzing has come a long way
from black-box [11, 34, 41] and hardware-in-the-loop [15,
29, 30, 33, 39, 52, 57] fuzzing. For all approaches requiring
physical hardware during any stage of testing, providing intro-
spection and effectively scaling analyses to large computation
power has proven to be a major challenge.

Recent state-of-the-art work solved these problems using
rehosting [17, 18, 47, 55, 60]. Existing rehosting approaches
use AFL [58] as their drop-in fuzzer component: P2IM [18],
µEMU [60] and FUZZWARE [47] all use AFL without changes
to its fuzzing logic. Instead, they all focus on emulator im-
provements that are orthogonal to our firmware-aware fuzzer.
In contrast, HOEDUR targets an aspect which was left for
optimization by previous work, namely, making the fuzzer
aware of the underlying firmware. This includes improving
the interaction between the firmware emulator and the inte-
grated fuzzer as well as the interpretation of fuzzing input as
multiple data streams.

9 Conclusion and Future Work

In this work, we identify a number of challenges encoun-
tered by the ad-hoc integration of general-purpose fuzzers for
testing firmware. Based on these insights, we devise novel
firmware-aware fuzzing techniques that feature a multi-stream
input representation. Using our multi-stream inputs, we un-
lock effective mutations of firmware input. We show that
HOEDUR significantly outperforms the state of the art in em-
bedded firmware fuzzing, both in terms of coverage and par-
ticularly in its ability to find more bugs more quickly.

As our multi-stream input representation allows for mutat-
ing firmware fuzzing input analogous to how general-purpose
fuzzers mutate inputs for testing user-space applications, our

multi-stream technique potentially opens up firmware fuzzing
to a wide field of exciting improvements. Consider, for ex-
ample, a UART device that provides shell access, where the
MMIO register with the input data is mapped to one data
stream. A specialized grammar fuzzer can provide this data
stream without interference from other MMIO accesses.

Acknowledgements

This work was funded by the European Research Council
(ERC) under the consolidator grant RS3 (101045669) and the
German Federal Ministry of Education and Research under
the grant CPSec (16KIS1899). This work was supported by
the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy –
EXC-2092 CASA – 390781972.

References

[1] Cornelius Aschermann, Tommaso Frassetto, Thorsten
Holz, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Daniel Teuchert. Nautilus: Fishing for Deep Bugs with
Grammars. In Symposium on Network and Distributed
System Security (NDSS), 2019.

[2] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. Redqueen: Fuzzing
with Input-to-State Correspondence. In Symposium on
Network and Distributed System Security (NDSS), 2019.

[3] Nils Bars, Moritz Schloegel, Tobias Scharnowski, Nico
Schiller, and Thorsten Holz. Fuzztruction: Using Fault
Injection-based Fuzzing to Leverage Implicit Domain
Knowledge. In USENIX Security Symposium, 2023.

[4] Fabrice Bellard. QEMU, a fast and portable dynamic
translator. In USENIX Annual Technical Conference,
2005.

[5] Marcel Böhme, Valentin J. M. Manès, and Sang Kil Cha.
Boosting Fuzzer Efficiency: An Information Theoretic
Perspective. In ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2020.

[6] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed Greybox Fuzzing.
In ACM Conference on Computer and Communications
Security (CCS), 2017.

[7] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based Greybox Fuzzing as Markov
Chain. In ACM Conference on Computer and Com-
munications Security (CCS), 2016.

[8] Alexander Bulekov, Bandan Das, Stefan Hajnoczi, and
Manuel Egele. Morphuzz: Bending (Input) Space to
Fuzz Virtual Devices. In USENIX Security Symposium,
2022.

[9] Sang Kil Cha, Maverick Woo, and David Brumley.
Program-adaptive Mutational Fuzzing. In IEEE Sympo-
sium on Security and Privacy, 2015.

[10] Olivier Chapelle and Lihong Li. An empirical evaluation
of thompson sampling. In International Conference
on Neural Information Processing Systems (NeurIPS),
2011.

[11] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun
Zuo, Zhiqiang Lin, XiaoFeng Wang, Wing Cheong
Lau, Menghan Sun, Ronghai Yang, and Kehuan Zhang.
IoTFuzzer: Discovering Memory Corruptions in IoT
Through App-based Fuzzing. In Symposium on Net-
work and Distributed System Security (NDSS), 2018.

[12] Peng Chen and Hao Chen. Angora: Efficient Fuzzing
by Principled Search. In IEEE Symposium on Security
and Privacy, 2018.

[13] Abraham Clements, Eric Gustafson, Tobias
Scharnowski, Paul Grosen, David Fritz, Christo-
pher Kruegel, Giovanni Vigna, Saurabh Bagchi, and
Mathias Payer. HALucinator: Firmware Re-hosting
through Abstraction Layer Emulation. In USENIX
Security Symposium, 2020.

[14] Contiki-NG. https://github.com/contiki-ng/
contiki-ng, 2020. Accessed: October 11, 2022.

[15] Nassim Corteggiani, Giovanni Camurati, and Aurélien
Francillon. Inception: System-Wide Security Testing of
Real-World Embedded Systems Software. In USENIX
Security Symposium, 2018.

[16] Erik van der Zalm et al. Marlin Firmware. https:
//marlinfw.org/, 2022. Accessed: October 11, 2022.

[17] Andrew Fasano, Tiemoko Ballo, Marius Muench,
Tim Leek, Alexander Bulekov, Brendan Dolan-Gavitt,
Manuel Egele, Aurélien Francillon, Long Lu, Nick Gre-
gory, et al. SoK: Enabling Security Analyses of Em-
bedded Systems via Rehosting. In ACM Symposium on
Information, Computer and Communications Security
(ASIACCS), 2021.

[18] Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scal-
able and Hardware-independent Firmware Testing via
Automatic Peripheral Interface Modeling. In USENIX
Security Symposium, 2020.

https://github.com/contiki-ng/contiki-ng
https://github.com/contiki-ng/contiki-ng
https://marlinfw.org/
https://marlinfw.org/

[19] Andrea Fioraldi, Daniele Cono D’Elia, and Emilio
Coppa. WEIZZ: Automatic Grey-box Fuzzing for Struc-
tured Binary Formats. In International Symposium on
Software Testing and Analysis (ISSTA), 2019.

[20] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. AFL++: Combining Incremental Steps of
Fuzzing Research. In USENIX Workshop on Offensive
Technologies (WOOT), 2020.

[21] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. CollAFL:
Path Sensitive Fuzzing. In IEEE Symposium on Security
and Privacy, 2018.

[22] Patrice Godefroid, Adam Kiezun, and Michael Y Levin.
Grammar-based Whitebox Fuzzing. In ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), 2008.

[23] Eric Gustafson, Marius Muench, Chad Spensky, Nilo
Redini, Aravind Machiry, Yanick Fratantonio, Da-
vide Balzarotti, Aurélien Francillon, Yung Ryn Choe,
Christophe Kruegel, et al. Toward the Analysis of Em-
bedded Firmware through Automated Re-hosting. In
Symposium on Recent Advances in Intrusion Detection
(RAID), 2019.

[24] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha.
CodeAlchemist: Semantics-aware Code Generation to
Find Vulnerabilities in JavaScript Engines. In Sym-
posium on Network and Distributed System Security
(NDSS), 2019.

[25] Andrew Henderson, Heng Yin, Guang Jin, Hao Han,
and Hongmei Deng. VDF: Targeted Evolutionary Fuzz
Testing of Virtual Devices. In Symposium on Recent
Advances in Intrusion Detection (RAID), 2017.

[26] Jesse Hertz and Tim Newsham. Project Triforce: Run
AFL on Everything! NCC Group, Tech. Rep., 2016.

[27] Chin-Chia Hsu, Che-Yu Wu, Hsu-Chun Hsiao, and Shih-
Kun Huang. INSTRIM: Lightweight Instrumentation
for Coverage-guided Fuzzing. In Workshop on Binary
Analysis Research (BAR), 2018.

[28] Evan Johnson, Maxwell Bland, YiFei Zhu, Joshua Ma-
son, Stephen Checkoway, Stefan Savage, and Kirill
Levchenko. Jetset: Targeted Firmware Rehosting for
Embedded Systems. In USENIX Security Symposium,
2021.

[29] Markus Kammerstetter, Daniel Burian, and Wolfgang
Kastner. Embedded Security Testing with Peripheral
Device Caching and Runtime Program State Approxima-
tion. In Conference on Emerging Security Information,
Systems and Technologies (SECUWARE), 2016.

[30] Markus Kammerstetter, Christian Platzer, and Wolfgang
Kastner. Prospect: Peripheral Proxying Supported Em-
bedded Code Testing. In ACM Symposium on Infor-
mation, Computer and Communications Security (ASI-
ACCS), 2014.

[31] Kyungtae Kim, Taegyu Kim, Ertza Warraich, Byoungy-
oung Lee, Kevin R. B. Butler, Antonio Bianchi, and
Dave Jing Tian. FuzzUSB: Hybrid Stateful Fuzzing of
USB Gadget Stacks. In IEEE Symposium on Security
and Privacy, 2022.

[32] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating Fuzz Testing. In ACM
Conference on Computer and Communications Security
(CCS), 2018.

[33] Karl Koscher, Tadayoshi Kohno, and David Molnar.
SURROGATES: Enabling Near-Real-Time Dynamic
Analyses of Embedded Systems. In USENIX Workshop
on Offensive Technologies (WOOT), 2015.

[34] Karl Koscher, Stefan Savage, Franziska Roesner, Shwe-
tak Patel, Tadayoshi Kohno, Alexei Czeskis, Damon Mc-
Coy, Brian Kantor, Danny Anderson, Hovav Shacham,
et al. Experimental Security Analysis of a Modern Au-
tomobile. In IEEE Symposium on Security and Privacy,
2010.

[35] Circumventing Fuzzing Roadblocks with
Compiler Transformations. https://
lafintel.wordpress.com/. Accessed: October
11, 2022.

[36] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan,
Shang-Wei Lin, Yang Liu, and Alwen Tiu. Steelix:
Program-state Based Binary Fuzzing. In ACM Joint
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering
(ESEC/FSE), 2017.

[37] LLVM. libFuzzer – a Library for Coverage-guided Fuzz
Testing. https://llvm.org/docs/LibFuzzer.html.
Accessed: October 11, 2022.

[38] Nicholas D Matsakis and Felix S Klock II. The rust
language. ACM SIGAda Ada Letters, 34(3):103–104,
2014.

[39] Marius Muench, Aurélien Francillon, and Davide
Balzarotti. Avatar2: A Multi-target Orchestration Plat-
form. In Workshop on Binary Analysis Research (BAR),
2018.

[40] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien
Francillon, and Davide Balzarotti. What You Corrupt Is
Not What You Crash: Challenges in Fuzzing Embedded
Devices. In Symposium on Network and Distributed
System Security (NDSS), 2018.

https://lafintel.wordpress.com/
https://lafintel.wordpress.com/
https://llvm.org/docs/LibFuzzer.html

[41] Collin Mulliner, Nico Golde, and Jean-Pierre Seifert.
SMS of Death: From Analyzing to Attacking Mobile
Phones on a Large Scale. In USENIX Security Sympo-
sium, 2011.

[42] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike
Papadakis, and Yves Le Traon. Validity Fuzzing and
Parametric Generators for Effective Random Testing.
In International Conference on Software Engineering
(ICSE), 2019.

[43] Gaoning Pan, Xingwei Lin, Xuhong Zhang, Yongkang
Jia, Shouling Ji, Chunming Wu, Xinlei Ying, Jiashui
Wang, and Yanjun Wu. V-Shuttle: Scalable and
Semantics-Aware Hypervisor Virtual Device Fuzzing.
In ACM Conference on Computer and Communications
Security (CCS), 2021.

[44] V. Pham, M. Böhme, A. E. Santosa, A. R. Caciulescu,
and A. Roychoudhury. Smart Greybox Fuzzing. IEEE
Transactions on Software Engineering, 2019.

[45] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. VUzzer:
Application-aware Evolutionary Fuzzing. In Symposium
on Network and Distributed System Security (NDSS),
2017.

[46] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos,
Jonathan M Foote, David Warren, Gustavo Grieco, and
David Brumley. Optimizing Seed Selection for Fuzzing.
In USENIX Security Symposium, 2014.

[47] Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric
Gustafson, Marius Muench, Giovanni Vigna, Christo-
pher Kruegel, Thorsten Holz, and Ali Abbasi. Fuzzware:
Using Precise MMIO Modeling for Effective Firmware
Fuzzing. In USENIX Security Symposium, 2022.

[48] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi,
Simon Wörner, and Thorsten Holz. Hyper-Cube: High-
Dimensional Hypervisor Fuzzing. In Symposium on
Network and Distributed System Security (NDSS), 2020.

[49] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi,
Simon Wörner, and Thorsten Holz. Nyx: Greybox Hy-
pervisor Fuzzing using Fast Snapshots and Affine Types.
In USENIX Security Symposium, 2021.

[50] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. kAFL:
Hardware-Assisted Feedback Fuzzing for OS Kernels.
In USENIX Security Symposium, 2017.

[51] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.

Driller: Augmenting Fuzzing through Selective Sym-
bolic Execution. In Symposium on Network and Dis-
tributed System Security (NDSS), 2016.

[52] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli,
Hang Zhang, Zheng Zhang, Ardalan Amiri Sani, and
Zhiyun Qian. Charm: Facilitating Dynamic Analysis of
Device Drivers of Mobile Systems. In USENIX Security
Symposium, 2018.

[53] Dimitri Vyokov. Syzkaller. https://github.com/
google/syzkaller. Accessed: October 11, 2022.

[54] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and
David Brumley. Scheduling Black-box Mutational
Fuzzing. In ACM Conference on Computer and Com-
munications Security (CCS), 2013.

[55] Christopher Wright, William A Moeglein, Saurabh
Bagchi, Milind Kulkarni, and Abraham A Clements.
Challenges in Firmware Re-Hosting, Emulation, and
Analysis. ACM Computing Surveys (CSUR), 2021.

[56] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing. In USENIX Secu-
rity Symposium, 2018.

[57] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and
Davide Balzarotti. AVATAR: A Framework to Sup-
port Dynamic Security Analysis of Embedded Systems’
Firmwares. In Symposium on Network and Distributed
System Security (NDSS), 2014.

[58] Michal Zalewski. american fuzzy lop. http://
lcamtuf.coredump.cx/afl/, 2017. Accessed: Octo-
ber 11, 2022.

[59] Zephyr Project. https://www.zephyrproject.org/,
2022. Accessed: October 11, 2022.

[60] Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. Au-
tomatic Firmware Emulation through Invalidity-guided
Knowledge Inference. In USENIX Security Symposium,
2021.

A Appendix

We list the bugs found by HOEDUR that were unknown to date
in Table 3. Additionally, we plot the coverage for HOEDUR,
SINGLE-STREAM-HOEDUR, and FUZZWARE for the remain-
ing targets of the µEMU [60] dataset in Figure 8. Table 4
contains the size information of the target firmware contained
within our target set.

https://github.com/google/syzkaller
https://github.com/google/syzkaller
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://www.zephyrproject.org/

Table 3: Overview of previously unknown bugs found by HOEDUR. During fuzzing the firmware images that were previously fuzzed by FUZZWARE, HOEDUR
also found bugs that were unknown to date. All bugs have been responsible disclosed, however, many remain unfixed and thus were redacted for submission.
More information will be included once the vulnerabilities have been fixed by the vendors.

CVE-20.. Target Version Description

22-41873 Contiki-NG 4.8 l2cap_channels OOB in get_channel_for_cid
22-41972 Contiki-NG 4.8 input_l2cap_credit missing NULL pointer check
23-31129 Contiki-NG 4.8 Missing Null Pointer Check in IPv6 Neighbor Discovery
23-29001 Contiki-NG 4.8 Infinite Recursion for IPv6 Routing Header
23-23609 Contiki-NG 4.8 Improper size validation of L2CAP frames
23-28116 Contiki-NG 4.8 mac_max_payload invalidating 6lo output bounds checks
23-24819 RIOT 2022.07 Buffer Overflow during IPHC receive
23-24820 RIOT 2022.07 Integer Underflow during IPHC receive
23-24821 RIOT 2022.07 Integer Underflow during defragmentation
23-24822 RIOT 2022.07 Null Pointer dereference during IPHC encoding
23-24823 RIOT 2022.07 Packet Type Confusion during IPHC send
23-24818 RIOT 2022.07 Null Pointer dereference during fragment forwarding
23-24825 RIOT 2022.07 Null pointer dereference in gnrc_pktbuf_mark
23-24826 RIOT 2022.07 Usage of Uninitialized Timer during forwarding of Fragments with SFR
23-24817 RIOT 2022.07 Out of Bounds write in routing with SRH
22-39274 LoRaMac-node 4.6 Buffer Overflow in ProcessRadioRxDone
22-3806 Zephyr 3.1 Double Free in bt_spi_send in Error case
23-0359 Zephyr 3.2 Missing Null pointer check in IPv6 processing
23-0397 Zephyr 3.2 Missing data checks can lead to invalid initialization
23-1422 Zephyr 3.2 sent_cmd Shared Reference Race Condition
23-1423 Zephyr 3.2 HCI Priority Event Handling Misses Allocation Error Handling
23-1902 Zephyr 3.2 HCI Connection Creation Dangling State Reference Re-use
23-1901 Zephyr 3.2 HCI send_sync Dangling Semaphore Reference Re-use

00:00 06:00 12:00 18:00
0

100

200

300

400

500

600

700

800

900
P2IM/Console

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200
P2IM/Drone

00:00 06:00 12:00 18:00
0

100

200

300

400

500

600

700
P2IM/Heat Press

00:00 06:00 12:00 18:00
0

100

200

300

400

500

600

700

800

900
P2IM/PLC

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200

1,400

1,600

#
C

ov
er

ed
 B

as
ic

 B
lo

ck
s

P2IM/Reflow Oven

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200

1,400

1,600
P2IM/Robot

00:00 06:00 12:00 18:00
0

100

200

300

400

500

600

700

800

900
P2IM/Steering Control

00:00 06:00 12:00 18:00
0

100

200

300

400

500

600

700

800

900

1,000
Pretender/RF Door Lock

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200
uEmu/GPSTracker

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200

1,400

1,600
uEmu/LiteOS IoT

00:00 06:00 12:00 18:00
Time (hh:mm)

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000
uEmu/utasker MODBUS

00:00 06:00 12:00 18:00
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200
uEmu/utasker USB

FuzzwareHoedur Single-Stream-Hoedur

Figure 8: Coverage achieved by HOEDUR and FUZZWARE on a diverse set of targets for ten 24-hour runs. We plot the median and 66% interval. Many of these
targets have a small amount of coverage, most of which is detected almost instantly by all fuzzers.

Table 4: Experiment Dataset Details. This table shows the size of the tested
binary code (Size) and the number of basic blocks contained within each
target (#BBs).

Target Size #BBs

Fuzzware/contiki-ng/CVE-2020-12140 504kB 4,002
Fuzzware/contiki-ng/CVE-2020-12141 504kB 3,080
Fuzzware/zephyr-os/CVE-2020-10064 84kB 7,316
Fuzzware/zephyr-os/CVE-2020-10065 51kB 4,949
Fuzzware/zephyr-os/CVE-2020-10066 51kB 4,951
Fuzzware/zephyr-os/CVE-2021-3319 79kB 7,009
Fuzzware/zephyr-os/CVE-2021-3320 79kB 7,007
Fuzzware/zephyr-os/CVE-2021-3321 79kB 7,003
Fuzzware/zephyr-os/CVE-2021-3322 79kB 7,006
Fuzzware/zephyr-os/CVE-2021-3323 79kB 7,006
Fuzzware/zephyr-os/CVE-2021-3329 50kB 4,972
Fuzzware/zephyr-os/CVE-2021-3330 79kB 6,911
HALucinator/6LoWPAN_Receiver 69kB 6,977
P2IM/CNC 49kB 3,614
P2IM/Console 29kB 2,251
P2IM/Drone 29kB 2,728
P2IM/Gateway 43kB 4,921
P2IM/Heat_Press 24kB 1,837
P2IM/PLC 24kB 2,303
P2IM/Reflow_Oven 30kB 2,947
P2IM/Robot 41kB 3,034
P2IM/Soldering_Iron 65kB 3,656
P2IM/Steering_Control 24kB 1,835
Pretender/RF_Door_Lock 38kB 3,320
Pretender/Thermostat 54kB 4,673
WYCINWYC/XML_Parser 92kB 9,376
uEmu/3Dprinter 88kB 8,045
uEmu/GPSTracker 46kB 4,194
uEmu/LiteOS_IoT 29kB 2,423
uEmu/Zepyhr_SocketCan 78kB 5,943
uEmu/utasker_MODBUS 40kB 3,780
uEmu/utasker_USB 36kB 3,491

	Introduction
	Firmware Fuzzing
	Embedded Systems Firmware
	Firmware-Peripheral Communication
	Rehosting-based Firmware Fuzzing

	Firmware Input Representation
	Firmware Input Processing
	Processing Flat Inputs
	Shortcomings of Flat Inputs

	Design
	Emulator
	Mutating Multi-Stream Inputs
	Scheduling Data Streams for Mutation
	Stream Selection
	Successor Stream Selection

	Comparison to General-Purpose Fuzzing

	Implementation
	Emulator
	Fuzzer

	Evaluation
	Setup
	Bug Finding Ability
	Code Coverage: Established Data Set
	Advanced Mutations via Dictionaries
	Finding Unknown Vulnerabilities

	Discussion
	Related Work
	Conclusion and Future Work
	Appendix

