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Greybox fuzzing enhances software security through unprecedented effectiveness in automated fault detection. Its success lies in the

coverage feedback extracted from the system under test, guiding the fuzzer to explore different program parts. The most prominent

way to use this feedback is novelty search, where the fuzzer keeps only new inputs exercising a new program edge. However, this

approach—by design—ignores input shadowing, in which interesting inputs are discarded if they do not contribute to new coverage.

This limits the accepted input space and may overlook bugs that shadowed inputs could trigger with mutations.

In this work, we present a comprehensive analysis of input shadowing and demonstrate that multiple fuzzing runs of the same

target exhibit a different basic block hit frequency distribution despite overlapping code coverage. We propose fuzzer restarts to

effectively redistribute basic block hit frequencies and show that this increases the overall achieved coverage on 15 evaluated targets

on average by 9.5% and up to 25.0%. Furthermore, restarts help to find more bugs and trigger them more reliably. Overall, our results

highlight the importance of considering input shadowing in the fuzzers’ design and the potential benefits of a restart-based strategy to

enhance the performance of complex fuzzing methods.
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1 INTRODUCTION

Fuzzing is a highly effective technique for uncovering software faults in programs, and in recent years, it has gained

rapid popularity in the software security testing community. Starting with feeding random inputs to Linux command

line utilities and observing their behavior [44], fuzzing has evolved into a highly specialized, well-developed technique
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that has undergone significant improvements in the past few years. Especially feedback-driven greybox fuzzing, as

popularized by AFL [70], is one of the most significant advancements in fuzzing. This technique changes the approach

from randomly generating inputs and observing the program to monitoring which parts of the program each input

covered. This coverage guidance allows the fuzzer to effectively and efficiently select, mutate, and execute inputs that

trigger new program behavior, maximizing the parts of the program that are tested.

To uncover as many bugs—and thus security vulnerabilities—as possible, a fuzzer attempts to test as much of the

program’s input space as it can. For this purpose, the fuzzer modifies a set of inputs using its mutators. Effectively, the

fuzzer’s mutators and the corpus shape the input space of the target that the fuzzer can cover. As fuzzers fundamentally

rely on novelty search, they only accept inputs to the corpus if they exercise new code coverage within the target

program. All inputs that exercise the same coverage are discarded, allowing the fuzzer to optimize its search to discover

new program regions that have not been executed yet.

Unfortunately, this limits the input space that can be explored. Assume the fuzzer finds an input that hits new

coverage in the program. The fuzzer considers this input to be novel and adds it to the corpus for further mutations.

Now, the fuzzer finds another, different input, yet it exercises the same coverage; this second input will be discarded

because it is not novel. We say the first input shadows the second one. However, the second input could be an essential

precursor to reach an interesting program location later in the fuzzing campaign, even if no new coverage is explored.

This is due to the fuzzer’s inner workings: It derives the next input to test by selecting one input from the corpus and

mutating it. As a result, the reachable input space is bounded by (i) the mutations a fuzzer can apply and (ii) the inputs

in the corpus. This implies that parts of the input space remain unreachable (with non-negligible probability) to the

fuzzer, as the available mutations applied to the corpus yield only a subset of all potential inputs. The existence of other,

shadowed inputs in the corpus would increase the theoretically reachable input space. From this point of view, shadowed

inputs should be included in the corpus to allow the fuzzer to explore a larger part of the input space. However, this is

infeasible in terms of performance and collides with the principles of novelty search, calling for new techniques.

Previous work has explored two directions to address this problem. First, approaches such as CollAFL [22],

datAFLow [29], or InvsCov [18] implicitly attempt to circumvent this problem by using more fine-grained or dif-

ferent feedback mechanisms. They increase the likelihood of considering previously shadowed inputs novel, according

to their metric. On the other hand, increasing the number of inputs that are considered novel automatically causes the

queue to grow, leading to the problem of wasting fuzzing cycles on irrelevant inputs. Even though these techniques de-

crease the number of shadowed inputs, they do not address the underlying problem. The second approach is techniques

that bridge distant gaps in the input space, as depicted in Figure 1. This can either be achieved by dividing the gap

into several smaller ones (e. g., via cmplog [3, 19]) or by improved mutations. Intuitively, we can use target-specific

mutations to bridge distant gaps and, thus, increase the reachable input space [7, 37, 40]. While this may decrease the

impact of shadowed inputs, it also does not address the underlying problem.

In this work, we analyze the impact of shadowed inputs on the explored input space and investigate a strategy to

mitigate its effects: fuzzer restarts. By adaptively restarting the fuzzer, we reset its internal state and, thus, enable it to

consider inputs as novel that were shadowed before. We hypothesize that fuzzers may benefit from such restarts in

terms of coverage and bugs found, as this would undo previous decisions that may be blocking further fuzzer progress.

While this appears counterintuitive, as information accumulated by costly executions is discarded, our results indicate

that this technique is indeed beneficial. It diversifies the tested basic blocks and helps the fuzzer to find new coverage

and trigger more bugs.

Manuscript submitted to ACM



Novelty Not Found: Exploring Input Shadowing in Fuzzing through Adaptive Fuzzer Restarts 3

𝑖1

𝑖2

𝑡

Fig. 1. Input space of a target program. Grey areas lead to the same coverage, red circles represent the input space we can reach with

our mutations given the respective input. As illustrated, 𝑖1 and 𝑖2 exercise the same coverage, however, our mutations can derive

input 𝑡 only from 𝑖2.

Contributions. In summary, we make the following three key contributions in this article:

• We shed light on the fact that fuzzing runs with the same initial configuration focus their attention on different

program parts and frequently exhibit input shadowing, even though they achieve similar code coverage.

• To quantify this phenomenon, we propose basic block frequency as a new metric to measure the distribution of

the fuzzer’s attention across different program parts.

• Based on these insights, we present several scheduling strategies that reset the fuzzing state via fuzzer restarts,

thereby mitigating input shadowing and achieving high block frequency as well as code coverage.

Research Artifact Availability. We publish our code and research artifacts at https://github.com/CISPA-SysSec/

fuzzing-restarts to foster research in this area.

2 MOTIVATION

We start by discussing the concepts of novelty search and input shadowing and their impact on fuzzing progress.

2.1 Novelty Search in Fuzzing

A novelty search algorithm is an exploration algorithm driven by the observation of the novelty of a specific behavior [16].

In the field of fuzzing, novelty search is primarily used to determine if a given input is interesting for further mutations.

For example, AFL uses a novelty search algorithm to decide whether an input should be kept by observing its yielded

coverage during execution. The fast novelty search algorithm employed by AFL is one of its key features contributing

to the success of its performance. Unfortunately, novelty search also comes with drawbacks, such as input shadowing.

2.2 Input Shadowing

Input shadowing describes the phenomenon that a coverage-guided fuzzer does not consider an input as novel because

it does not contribute unique coverage. In practice, this means the fuzzer has found another input producing the same

coverage first. On a technical level, most fuzzers track coverage progress using a bitmap. From the fuzzer’s perspective,

the second input deserves no attention, as the first entry had already set the corresponding bitmap entries, meaning the
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second input has not explored new program behavior. We say these two inputs share a novelty equivalence class, with a

more formal definition being:

Definition 1: Novelty Equivalence Class

For a given program 𝑝 with the input space 𝐼 and a fuzzer 𝑓 , a novelty equivalence class 𝜈 comprises all possible

inputs 𝑖 ∈ 𝐼 that 𝑝 accepts and that, when executed, yield the same coverage measurement to 𝑓 .

A difference between inputs in this novelty equivalence class is solely discernible on the byte level (crucially, without

this difference impacting the execution path). For the sake of an example, suppose we have two inputs 𝑖1 and 𝑖2 that

share a novelty equivalence class 𝜈 . 𝑖2 is not necessarily better or worse than 𝑖1, but the crucial point is that the difference

on the byte-level allows the fuzzer’s mutations to create other inputs from 𝑖2 than from 𝑖1. Consider an example program

with the input space shown in Figure 1: Our mutations would be able to find another interesting input, 𝑡 , when applied

on 𝑖2, however, not on 𝑖1. As both 𝑖1 and 𝑖2 share the same coverage and 𝑖1 is discovered first, the fuzzer will not consider

input 𝑖2 and, thus, not generate input 𝑡 . Consequently, we may never exercise this part of the program, as the fuzzer

blocks itself. We say that 𝑖2 is shadowed by 𝑖1, or more formally:

Definition 2: Input Shadowing

An input 𝑖2 is shadowed by another input 𝑖1 if both inputs share a novelty equivalence class 𝜈 and 𝑖1 has been

executed before 𝑖2, such that the execution of 𝑖2 achieves no new coverage.

We emphasize that input shadowing is not necessarily bad. After all, it is a natural consequence of the fuzzer’s

novelty search that focuses on discovering new program behaviors rather than re-testing old ones. That said, we believe

the downsides of input shadowing to be largely overlooked in the literature: A shadowed input 𝑖2 may be a necessary

predecessor to some bug-inducing behavior, meaning the fuzzer effectively locks itself out by discarding 𝑖2.

We illustrate this behavior using the exemplary function in Algorithm 1 as fuzz target. Our target function takes

two parameters: an unsigned 32-bit integer 𝑎 and an unsigned 16-bit integer 𝑏. The function’s purpose is to check

if the sum of 𝑎 and 𝑏 is less than 128, provided that 𝑎 is smaller than 256. If both conditions are met, execution is

aborted. Consider a fuzzer that generates inputs for this function by randomly selecting values from a uniform and

independently distributed range of 32-bit integers. Suppose the fuzzer initially chooses 𝑎 = 200. It successfully solves

the first branch and records the feedback in its bitmap. In the subsequent step, the fuzzer attempts to satisfy the next

branch condition (𝑎 + 𝑏 < 128) by mutating the variable 𝑏 while maintaining the previously discovered value for 𝑎.

However, with the value of 200 for 𝑎, it becomes impossible to fulfill the second branch condition. If the fuzzer now

mutates the value for 𝑎 again, opting for 𝑎 = 50 and 𝑏 = 100, the first condition would be satisfied once more but not

the second one. However, due to the novelty search, the fuzzer does not save the new value for 𝑎 because the fuzzer

has already identified an input achieving the exact same coverage (𝑎 = 200). In other words, the first input (𝑎 = 200)

shadows the second one (𝑎 = 50). Nevertheless, it is easy to see that 𝑎 = 50 would have been the better choice to meet

the second condition. Now, this does not mean the fuzzer may never solve the branch, but it decreases the likelihood:

The fuzzer can still correctly guess two new values for 𝑎 and 𝑏 in a single iteration, such that 𝑎 + 𝑏 < 128. However, this
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Algorithm 1 Example function showcasing impact of input shadowing

1: function foo(𝑎 : 𝑢32, 𝑏 : 𝑢16)

2: if 𝑎 < 256 then
3: if 𝑎 + 𝑏 < 128 then
4: Abort

5: end if
6: end if
7: end function

is less likely if the fuzzer only had to guess the value for 𝑏. While this example is simplistic and artificial, it showcases

that in some situations the fuzzer can benefit from other inputs in the same novelty equivalence class.

Consequently, the question is whether we can mitigate the downsides of input shadowing without sacrificing the

benefits of the novelty search that is one of the driving factors behind modern fuzzer success. A naive way to mitigate

the impacts of this phenomenon is to reset the fuzzer state (in terms of saved inputs and the bitmap) and observe how a

new, “clean” run performs, which we can achieve by restarting the fuzzer. Intuitively, this sounds like a bad idea: After

all, we already spent significant resources in terms of executions for driving the exploration of the program towards

new, unseen behaviors.

2.3 Basic Block Frequencies

To analyze the impact of such state-resetting restarts, we conducted a fuzzing campaign on libpng and recorded the

basic block hits throughout the fuzzing runs. More precisely, we run AFL++ multiple times for 24 hours using different

tweaks: As a baseline, we use a standard setup of AFL++ without any restarts. Additionally, we use five setups with

restart frequencies of 12, 6, 2, and 1 hours, as well as 15 minutes, resulting in 1, 3, 11, 23, and 96 restarts, respectively. To

account for inherent randomness, we conduct the experiment ten times for each fuzzer and use the median trial for the

subsequent analysis. The results are shown in Table 1 and Figure 2. Next, we discuss this experiment in more detail.

Contrary to the intuitive assumption that discarding state will lead to a lower coverage, we find that all runs using

restarts have slightly higher branch coverage than the baseline (see Table 1). Even more interestingly, we find that

restarted runs show a more diverse exploration behavior: Across the board, basic blocks are hit more often compared to

the baseline. To study this phenomenon in detail, we sample every 10, 000-th input during the runs and record the basic

blocks it reaches. In this process, each basic block is counted only once per sample. Therefore, we did not count the

number of hits for each basic block, but rather the number of samples that reached each basic block. Importantly, we do

Table 1. Branch coverage from libpng of the median run from ten 24 hour runs and basic block hits that are more than twice as often
triggered by the baseline ■ or our restarted fuzzer ■.

#Basic Blocks favoring
Median #Branches ■ Baseline ■ Tweak

AFL++ 2006 – –

no-restart 2006 426 376

reset- 720min 2011 146 542

reset- 360min 2015 122 597

reset- 120min 2016 95 640

reset- 60min 2017 104 642

reset- 15min 2019 89 717
Manuscript submitted to ACM



6 Nico Schiller, Xinyi Xu, Lukas Bernhard, Nils Bars, Moritz Schloegel, and Thorsten Holz

(a) No restarts (b) Restart after 12h

(c) Restarts every 6h (d) Restarts every 2h

(e) Restarts every 1h (f) Restarts every 15min

10
−1

10
0

10
1

Fig. 2. Heatmaps based on Hilbert curves showing the frequency in logarithmic scale of basic block hits during a fuzzing run relative

to a baseline run for the target libpng (we use the median run from ten 24 hour runs for each). Each cell represents a basic block;

blue blocks ■ indicate the median baseline run hit this basic block more frequently, and red ■ indicates the opposite. This shows that

fuzzer restarts diversify the basic blocks visited, as its inherent randomness causes the fuzzer to hit different basic blocks.

not work on the queue to avoid survivorship bias: As each input accepted into the corpus is novel, if we sampled from

the queue, we would blur the experiment’s results, biasing our analysis towards such inputs while ignoring shadowed

inputs. Due to the large number of inputs executed by fuzzers, we only sample the covered basic blocks for a subset of

them. We show the results of this experiment as heatmaps, transforming the 1-d coverage bitmap to a 2-d representation

using a space-filling Hilbert curve in Figure 2, comparing the frequency of basic block hits against the baseline without

any restarts. Each cell marks a distinct basic block; blue ■ indicates the basic block was hit more often by the baseline,

while red ■ denotes the basic block was visited more often by the tweak. White indicates equal frequency, meaning both

fuzzers visited the basic block the same number of times. The difference is represented through the shade, with darker

colors representing a larger difference. Without restarts, rare edges are hit less often, if at all. Instead, non-restarting

runs hit the more frequent blocks even more often than restarting ones. As we use a logarithmic scale, this difference

appears less pronounced in the plots.

When running this experiment, one may intuitively assume that fuzzing runs with roughly equal coverage would

exercise edges at approximately the same frequency. However, when we compare two ordinary fuzzing runs that were
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not restarted, we find the opposite: As depicted in Figure 2a, the distribution of frequencies shows differences exceeding

an order of magnitude. In other words, each fuzzing run stresses different parts of the program while still achieving

comparable code coverage. This implies that the final coverage results (in the form of the corpus) are no accurate

representation of the input distribution tested during the fuzzing run. Executing a novel coverage once suffices to add

this input to the corpus, even if it is never tested again – similarly, a basic block exercised thousands of times may be

represented by a single input in the corpus. We emphasize that this observation does not imply that measuring code

coverage is an inferior metric, as it is still an excellent proxy for the observed program states.

Our initial results suggest that simply running the fuzzer helps to visit basic blocks more often, without sacrificing

overall exploration. Speculatively, exploring basic blocks with different inputs may help to uncover bugs [18]. However,

one problem with running the fuzzer multiple times is the associated cost: Running it a second time effectively doubles

the cost, rendering the benefit of potentially having some different inputs tested unclear. To avoid this cost, we could

restart the fuzzer after half the runtime, say, after 12 hours. This would probably lead to a better frequency distribution

of basic block hits, but at the cost of potentially missing some of the coverage. To investigate whether this works in

practice, we restarted the fuzzer in different frequencies, ranging from one time (after 12 hours) up to 96 times (every

15 minutes) resulting in Figures 2b, 2c, 2d, 2e, and 2f, respectively. As these heatmaps show, a higher number of restarts

is indeed helpful for diversifying the set of hit basic blocks. Interestingly, even a single restart after 12 hours (Figure 2b)

increases the block frequency. However, restarting the fuzzer more than once shifts the frequency distribution clearly

in favor of the tweak, i. e., the restarted fuzzer. At the same time, the more restarts occurred, the more coverage was

found, even though it is still similar to the baseline.

In summary, our experiment indicates that fuzzer restarts can potentially help to increase the basic block hit frequency

and therefore help to trigger rare blocks more frequently. We hypothesize that this may help the fuzzer’s bug finding

capability. At the same time, restarts have a positive but small impact on the coverage found. We speculate that with a

better, more adaptive strategy than restarting the fuzzer after a fixed period of time, we can further increase the benefits.

2.4 Challenges

A better strategy to overcome these fixed interval restarts must mainly solve two challenges. First, we must determine

a “good” point in time when to reset the fuzzer. Restarting the fuzzer too early will prevent it from exploring deeper

program parts meaningfully. Restarting the fuzzer too late, on the other hand, spends fuzzing time without accounting

for the effect of input shadowing. Second, fully resetting the fuzzer state discards valuable information. We hypothesize

that maintaining a balance between keeping valuable information, such as seeds unlocking new regions of the program

under test, and discarding this information that potentially shadows other inputs could be worthwhile. The underlying

insight is that solving some fuzzing roadblocks and uncovering new coverage can be challenging, potentially restricting

the fuzzer to a small part of the program when continuously restarting it. The challenge is to find an optimal balance

between information kept and discarded. Ultimately, the ideal strategy would be to restart the fuzzer when the likelihood

of finding new coverage is below a certain threshold and discard all inputs leading to this situation. In practice, the lack

of information renders both challenging. While we could collect more precise information during fuzzer runtime, this

increases the runtime overhead, reducing the fuzzer’s effectiveness.

3 ADAPTIVE FUZZER RESTARTS

To overcome these challenges and mitigate input shadowing without sacrificing code coverage, we propose a scheduler

that uses several techniques to reset the fuzzer’s state at the right moment.
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Fig. 3. Overview of our restart scheduler

3.1 Restart Scheduler Overview

The restart scheduler is responsible for the orchestration of a fuzzing campaign. It is not to be confused with fuzzer-

internal seed scheduling. In our case, the scheduler’s task is to monitor a fuzzing run and restart the fuzzer according to

some metric discussed subsequently. This restart may include the preservation of the fuzzing state.

To explain the scheduler’s behavior across a fuzzing campaign, we show an overview in Figure 3. First, an initial

𝑟𝑢𝑛0 is launched by spawning a fuzzer instance. As with traditional fuzzing, we need to provide it with a set of initial

seeds. Then, our scheduler monitors this instance during fuzzing ➊. In particular, it tracks changes, such as paths found,

which are used to decide whether to restart ➋ the fuzzer based on some restart policy. In the event of a restart, the

currently running fuzzer instance 𝑟𝑢𝑛𝑛−1 is stopped, and—if we want to keep some state across the restart—its resulting

𝑞𝑢𝑒𝑢𝑒 is processed according to our corpus strategy ➌. The preserved state as a subset of the 𝑞𝑢𝑒𝑢𝑒 is then passed to

the next fuzzing run 𝑟𝑢𝑛𝑛 as initial seeds (alongside the original seeds). The process then continues with monitoring

the new instance ➍ until the next restart is due.

3.2 When to Restart: Coverage Plateaus

The first challenge is identifying a suitable time to restart the fuzzer.

Coverage plateaus. We rely on the insight that all fuzzing runs at some point hit so-called coverage plateaus. This

denotes the time when the fuzzer, despite continuously mutating inputs, fails to uncover any new coverage. This

manifests as a plateau in coverage plots, yielding the descriptive name. Retrospectively, such coverage plateaus are easily

identified; during the actual run, it is difficult to predict whether the fuzzer is stuck in a plateau or is close to solving

some complex constraints that yield new coverage. To achieve a computationally feasible yet effective recognition of

such plateaus, we propose the following heuristic: We consider the fuzzer to be situated in a plateau when it fails to

uncover new coverage, i. e., new edges of the program, for n minutes, where n is a small number such as 15. As the

experiment from our motivation shows, small restart times have the greatest benefit for a better distribution of the

basic block hits.

Detection heuristics. Our scheduler features several strategies for deciding on the point in time at which to restart

the fuzzer. The first and most naïve one does not rely on detecting coverage plateaus but instead uses a fixed or random

countdown and restarts the fuzzer once this countdown expires (akin to the strategy used in the motivating experiment
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in Section 2). While this heuristic is straightforward, it has a major drawback: It does not account for the current

performance of the fuzzing run. Using this heuristic might cause the fuzzer to be restarted while discovering a new

region of the target program that has not been covered yet. To avoid degrading the fuzzer’s performance because

of poorly timed restarts, our restart scheduler monitors the coverage progress of the fuzzer to determine whether

the fuzzer is currently advancing. Every time the fuzzer finds new coverage, the countdown is reset, essentially only

restarting the fuzzer when it hits a coverage plateau and fails to find new coverage for a certain amount of time. This

adapts the fuzzer restarts to the program under test. The combination with small restart times and the coverage plateau

detection allows the scheduler to perform more restarts on targets that reach a coverage plateau early and extend the

restart times on targets where the fuzzer is able to exercise new coverage.

Unfortunately, this approach still has a disadvantage for targets where new coverage is found slowly but steadily.

Imagine a fuzzer that finds a single new edge every five minutes: We speculate that restarting aggressively despite

finding this edge can be beneficial. Thus, our scheduler features a third heuristic that uses a threshold allowing the

configuration of the degree of coverage growth that causes our restart timer to be reset. The threshold is calculated over

the fuzzing progress observed in the past and prevents the scheduler from being stalled by programs with negligible

coverage growth over time.

In summary, our restart scheduler features the following three heuristics:

(1) Blind restarts with fixed or random reset countdown

(2) Coverage plateau-based restarts

(3) Coverage growth rate-based restarts using a threshold

3.3 How to Restart: Corpus Retention

The second crucial design decision we must consider for our scheduler is how much of the fuzzer’s state should be reset.

This directly translates to how much of the generated corpus we want to preserve across fuzzing runs by passing them

as initial seeds to the subsequently started run.

Motivation. The most basic approach is to reset the complete state of the fuzzer and start in a new environment, such

that the new instance has no information about the previous advancement. This approach has the disadvantage that

the new fuzzing run must re-explore the entire program. For this reason, more advanced strategies are desirable, which

keep parts of the generated corpus from the previous run to consecutively transfer some of the coverage information

to subsequent runs. This partly preserved corpus bootstraps the fuzzer, since it immediately has several inputs that

explore different program behaviors.

Corpus retention strategies. Our scheduler is equipped with the following six strategies to identify the parts of the

corpus to keep.

(i) Reset. This strategy represents a full reset; it does not keep any files from the corpus, thus not preserving any

information.

(ii) Input Shuffle. The input shuffle strategy is the opposite of our reset strategy. When a restart occurs, all corpus

files are shuffled by assigning a random numerical prefix to each testcase name. This leads to a different order in which

the corpus files are read by AFL++. The renamed files are then used as a new seed corpus for the next run; therefore

nothing is discarded.

Manuscript submitted to ACM



10 Nico Schiller, Xinyi Xu, Lukas Bernhard, Nils Bars, Moritz Schloegel, and Thorsten Holz

(iii) Corpus Pruning. Upon a restart, corpus pruning randomly selects a percentage between 5% and 95% of generated

inputs from the corpus to delete. Removing more inputs reduces the effects of input shadowing, while at the same time

requiring the fuzzer to spend more cycles rediscovering inputs. We speculate there is no universally good formula to

decide which inputs to discard, as it is a highly target-dependent problem. Thus, our scheduler uses random choice, in

the spirit of fuzzing, to explore both directions in a balanced way.

(iv) Time Travel. The time travel strategy selects a random timestamp at which the corpus of the current run is a

snapshot. Upon restart, our scheduler passes this snapshot of the corpus to the new fuzzing run. This effectively deletes

all files in the corpus found after a specific point in time. The motivation is to reset the fuzzer’s attention and allow it to

re-explore the program from this specific point in time.

(v) Tree Chopper. The idea behind the tree chopper strategy is to remove all offspring from one or more selected

files within the generated corpus. This allows us to identify trees of inputs, i. e., one input and all subsequent inputs

derived from this one via mutations. The scheduler selects a random subtree in the input-mutation graph; then, all

offspring originating from this input are removed from the corpus. This approach allows the fuzzer to explore different

states based on the remaining corpus and potentially make alternative decisions regarding the remaining corpus.

(vi) Tree Planter. The tree planter strategy is similar to tree chopper, with the key difference being that all

generated trees except a single one are removed. This may allow the fuzzer to explore a particular part of the target in

greater depth.

(vii) Ensemble. Similar to ensemble fuzzing, where multiple fuzzers are combined and scheduled adaptively [13, 20, 26],

we hypothesize that an ensemble strategy, which dynamically selects the most suitable retention strategy for the

respective target under test, could improve the efficiency. Thus, we propose an ensemble strategy that leverages a

variety of retention strategies throughout the fuzzing process to adapt to the evolving characteristics of the target

application.

In detail, our ensemble strategy systematically cycles through different retention strategies, initiating the fuzzing

campaign with the reset strategy to establish a starting point for subsequent runs. In the following runs, a retention

strategy is then randomly selected from the available options (prioritizing never tested ones). More precisely, the

scheduler evaluates the performance of a chosen strategy over the next three restarts. Once the fourth restart occurs,

the scheduler decides whether to retain or replace the current strategy for the next runs based on its performance. More

precisely, it compares the average corpus counts for the current strategy with the overall average from the previous

runs. Beyond the performance of the currently active strategy and the average performance observed across all tested

strategies, the scheduler also keeps a record of the best-performing strategy it has observed across all restarts, ensuring

it can always fall back to the best strategy observed when others prove unsuccessful.In the case this best-performing

strategy no longer gains new coverage over multiple restarts, the scheduler will replace it with a random one.

Given that the ensemble strategy necessitates multiple runs, it is particularly well-suited for long-term fuzzing

campaigns and targets that exhibit coverage plateaus after an initial exploration period. By dynamically adapting to the

changing dynamics of the target application, the ensemble strategy aims to maximize the overall code coverage and

vulnerability discovery potential over extended fuzzing campaigns.
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4 IMPLEMENTATION

To test the impact of restarts during a fuzzing campaign, we implemented our scheduler in a prototype called Sileo,

which spawns and monitors the underlying fuzzer instances. Our prototype is written in 1, 358 lines of Python code

and uses AFL++ in version 4.04c for fuzzing the target under test. Sileo can be easily combined with other fuzzers, as

it requires only three primitives: (1) Sileo must receive information regarding the coverage achieved so far (e. g., the

number of edges found). (2) It must have access to the inputs considered interesting (i. e., the queue) to apply one of the

corpus retention strategies. (3) Sileo must be able to start and stop a new fuzzer instance. As these requirements are

satisfied by virtually every general-purpose fuzzer, replacing Sileo’s underlying fuzzing engine is straightforward.

In the case of AFL++, the coverage can be monitored by observing the fuzzer_stats file, which periodically exports

several fuzzer metrics via the filesystem. Likewise, access to the generated inputs can be achieved by reading the content

of AFL++’s queue directory. Since AFL++ is a user-space application, the spawning and termination of a fuzzer instance

can be facilitated using standard OS primitives for process creation and termination.

Coverage plateau detection heuristics. To detect coverage metrics, we periodically poll the fuzzer_stats file and

examine the elapsed time since the last_find and the corpus_count. A restart is triggered if the last_find time

exceeds the restart countdown. When the threshold-based restart heuristic is used, we save the current corpus_count

and calculate the threshold based on the last 𝑛 values of these corpus counts. If the restart countdown has elapsed and

the threshold has been reached, a restart is triggered.

Corpus retention strategies. We implement the different corpus retention strategies introduced in Section 3.3 in

Sileo. After a restart has been scheduled, first, a copy of the current queue is generated. After that, depending on

the chosen retention strategy, some files are potentially discarded and shuffled to account for input shadowing, while

importing the newly generated seed corpus.

For our experiments, we used FuzzBench [42]. However, we observed that disk space usage increases significantly

when using our corpus-based strategies, since FuzzBench creates periodic snapshots of the corpus. To mitigate this

issue, we added an option to FuzzBench so it only stores the last two corpus archives. Additionally, to facilitate sampling

of every input (instead of only those in the corpus), we patch AFL++ and add functionality to store every 𝑛-th execution.

This feature is used during evaluation to compute metrics, like the heatmaps from Figure 2 and our basic block frequency

plots, over the generated fuzzer test cases.

5 EVALUATION

For our evaluation, we use our prototype Sileo and test it with different heuristics to determine when to restart the

fuzzer as well as the efficacy of various corpus retention strategies.

During the course of our evaluation, we answer the following three research questions:

• RQ1: Are fuzzer restarts an effective and efficient mitigation of the downsides of input shadowing?

• RQ2:What is the impact of fuzzer restarts on code coverage?

• RQ3: Can fuzzer restarts help find bugs in software?

Experiment Setup. We conducted our evaluation on a server equipped with an Intel Xeon Gold 6230R CPU featuring

52 cores at 2.10GHz and 196GB of memory, running Ubuntu 22.04. Using FuzzBench, we orchestrated the fuzzing

campaign for the coverage experiments, considering each strategy as an individual fuzzer. All fuzzers were run for

24 hours, and each experiment was repeated ten times to account for inherent randomness in the fuzzing process,
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following the recommendation by Klees et al. [32] and Schloegel et al. [54]. In addition to our coverage experiments, we

executed a long-term run of one target and bug-finding experiments. To preempt external factors from interfering with

our experiments, we assign each run of every fuzzer to a dedicated physical core and disable the CPU’s turbo-boost

feature, such that it maintains a consistent frequency for each core, even in case of partial CPU utilization.

Fuzzbench andTarget Applications. Themajority of our experiments are conducted using the benchmark framework

FuzzBench [42]
1
. We employed a custom version of FuzzBench with modifications to the code base that reduce

overhead in terms of disk space and address minor bugs. We will add our version of FuzzBench to our artifact.

FuzzBench offers a diverse set of target applications to assess fuzzer performance in terms of coverage and bug

discovery. We selected a total of 15 targets, comprising twelve FuzzBench targets
2
and one additional target outside of

FuzzBench (objdump 2.41.50.20231023). In addition, eight further FuzzBench targets are designated for bug-finding

experiments. Our choice of FuzzBench targets was informed by official public reports, demonstrating their variability

in coverage across different fuzzers.

Selected Restart Strategies and Heuristics. Our prototype Sileo features three different restart heuristics and

six retention strategies. Since the plateau-based heuristic leads to few (if any) restarts on some targets, we chose the

coverage growth heuristic for all our experiments to decide when to restart the fuzzer. From our six corpus retention

strategies—that decide what parts of the generated corpus are used as seeds after a restart—we select a subset of

three strategies (reset, corpus pruning, and input shuffle) for the subsequently presented evaluation to maintain

readability. Interested readers can explore our artifact
3
to find all proposed restart strategies (tree planter, tree

chopper, time travel) for all tested FuzzBench targets. We chose the named three strategies, as reset and input

shuffle represent excellent baselines for Sileo itself, and corpus pruning has proven to be the best-performing

strategy. reset resets the complete fuzzer state, not using any part of the generated corpus for the next run, while

input shuffle retains the entire corpus and shuffles all files randomly, allowing the fuzzer to start with a vast seed

corpus in the next run. Positioned as a middle ground between these two strategies, corpus pruning is then employed.

Fuzzers and Baselines. We use AFL++ in version 4.04c [19] as the foundation for Sileo and, consequently, as a

baseline without restarts. Due to our various restart strategies, we build each strategy on top of AFL++ and add it as an

individual fuzzer to FuzzBench, facilitating comparability with our baseline and other strategies.

Coverage Computation. We use FuzzBench, which internally uses llvm-lcov, to compute coverage. FuzzBench

generates a detailed report that not only illustrates the found coverage of the conducted experiment but also provides

additional information, such as a statistical evaluation, to confirm the statistical relevance of the results. For our target

objdump, which we executed without FuzzBench, we also used llvm-lcov to calculate coverage metrics. To do this,

we executed all generated fuzzer inputs for a target from all fuzzers on the same coverage binary to ensure consistency

and comparability of results. This approach enables a standardized assessment of code coverage across different fuzzing

strategies, contributing to the robustness and reliability of our experimental evaluations. d

5.1 Experiments

To evaluate the effectiveness of restarting the fuzzer, we compare our various restart strategies against AFL++, using the

selected target applications (15 in total). Besides the experiment with our different restart strategies, we also perform

1
commit: 6ca67572eed7035fe7fb0655d5d40ad426c92a3d

2
We used the OSS-Fuzz [43] benchmark integration script provided by FuzzBench to integrate targets beyond the default ones

3
https://github.com/CISPA-SysSec/fuzzing-restarts
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an experiment that uses afl-cmin and a long-term experiment over 7 days with the ensemble strategy. Each target was

run for 24 hours (except the long-term experiment) with ten repetitions, and we plot the median over all runs and the

60% trimmed interval to omit outliers. For brevity, this paper presents the results for a subset of our targets, while the

complete set of results for all targets is available in our research artifact available online. In summary, we conducted the

following six experiments to address our research questions:

(1) Main coverage experiment spanning a total of nine targets

(2) Coverage experiment investigating the effect of corpus minimization after restarts

(3) Long-term coverage experiment (runtime of 7 days per fuzzer) that uses our ensemble strategy

(4) Coverage experiment studying fixed restart times

(5) Sampling experiment on the targets sqlite3, libpcap, and libpng

(6) Bug experiment on eight FuzzBench targets

Experiment 1: Coverage Experiment. We show the results of our main coverage experiment in Figure 4 and various

statistics in Table 2. Overall, our results indicate that restarting the fuzzer positively impacts code coverage across all

selected targets, with at least one of the restart strategies outperforming the baseline AFL++ in terms of covered branches.

This observation aligns with the findings from the full coverage report on all nine targets from the research artifact.

When comparing the performance of different restart strategies, it becomes evident that their effectiveness heavily

depends on the target itself: In three out of the six targets, corpus pruning performs best, especially on objdump, where

it achieves significantly more coverage than both reset and input shuffle as well slightly outperforming AFL++.

We also observe a similar performance for sqlite3, where corpus pruning outperforms AFL++ and input shuffle.

When comparing reset and input shuffle, reset’s median of covered branches outperforms input shuffle in four

out of six targets (see Figure 4 and Table 2), whereas in two of these four targets, the median lies within the trimmed

60% intervals.

To confirm our results statistically, we follow the recommendations of Arcuri and Briand [2] and consider the

two-sided non-parametric Mann-Whitney-U test as well as the effect size as determined by Vargha’s and Delaney’s

𝐴12 test [61]. We show them in Table 2.

For corpus pruning, all results except for mupdf compared to the baseline are statistically significant, and the effect

sizes are large. For mupdf, the effect size is medium, but the difference is statistically insignificant. Regarding our input

shuffle strategy, only two cases show statistical significance (bloatyfuzz and objdump), with both cases having

a large effect size, but on the target objdump, the observed effect size is negative. Our last strategy, reset, exhibits

statistical significance for all six listed targets with a large effect size. However, the effect size for two out of the six

targets is negative (objdump and sqlite3), indicating that reset is outperformed by AFL++.

To analyze our techniques, we track the number of restarts performed by corpus pruning, reset, and input

shuffle throughout the evaluation, as summarized in Table 2. To illustrate the actual impact of a restart on coverage,

we plot the median run of four targets in Figure 5 and indicate the position of a restart using the respective marker

symbol. As depicted, a restart may not necessarily result in an immediate jump in new coverage; instead, it can lead

to a slow but steady growth effect. The data reveals that corpus pruning requires significantly fewer restarts (up to

13 times less, with an average of 12 restarts across all targets) compared to input shuffle (with an average of 61

restarts across all targets), while still achieving higher coverage in five out of six targets. When comparing the number

of restarts between corpus pruning and reset, the latter also performs more restarts (with an average of 25 restarts

across all targets), although it outperforms corpus pruning only on two out of six targets slightly. Upon comparing
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Fig. 4. The coverage (in branches) for different tools of 24 hour runs. Displayed is the median coverage over ten repetitions, and the

trimmed 60% interval.
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the number of restarts with the achieved branch coverage and the respective corpus retention strategy, it becomes

evident that the success of our approach is not solely determined by the frequency of restarts. Rather, it heavily relies on

the interplay between the corpus retention strategy employed and the specific target under test. A detailed examination

of the restart frequency in relation to corpus preservation reveals that having a high number of restarts or preserving

the entire corpus does not necessarily entail an advantage. The results suggest that dynamically preserving specific

parts of the corpus leads to a lower number of restarts. All three strategies share the same restart heuristic (coverage

growth), and our findings indicate the following:

• i) Preserving the entire corpus often results in a saturated corpus after a short amount of time. Utilizing such a

saturated corpus as the initial seed corpus for the fuzzer makes finding new inputs that explore new coverage

challenging. Consequently, coverage growth stagnates quickly, triggering another restart. While a restart offers

the advantage of a complete reset of the fuzzer bitmap, it still suffers from corpus saturation.

• ii) Preserving nothing from the corpus and discarding the fuzzer progress entirely generally leads to more restarts.

The issue here is that the “first” restart (after starting “fresh”) occurs more frequently due to always having the

same set of initial seed files, making it more challenging to reach deeper code paths before a new restart. Similar

to (i), a restart has the advantage of a complete reset of the fuzzer bitmap but suffers from having the same set of

seeds in the next run, providing the fuzzer with the same starting point.

As a compromise between input shuffle and reset, it is unsurprising that corpus pruning achieves the best

performance across almost all targets. However, despite these negative effects, we observe that both reset and input

shuffle perform almost as good as or even slightly better than corpus pruning on specific targets (e.g., applying

reset on mupdf). After studying these targets, we believe these to be cases where the benefits of restarting more often

Table 2. Statistical analysis of our code coverage experiment, with the hypothesis that tweak performs better than baseline. We use

the median covered branch values to measure the effect size using Vargha’s and Delaney’s 𝐴̂12 test and use their categorization (L =

large, M = medium, S = small; a minus represents a negative effect size, indicating the tweak is worse than the baseline) [61]. We use

the two-sided non-parametric Mann-Whitney-U test and mark 𝑝 < 0.05 in bold.

Tweak Baseline Target #Restarts Tweak Baseline Effect Size p-value

corpus pruning AFL++

readelf 10 14,084 13,379 +L(0.82) 0.0147
bloatyfuzz 32 5,902 4,842 +L(1.00) < 0.0001
libpcap 12 2,891 2,693 +L(0.93) 0.0005
mupdf 6 32,642 32,179 +M(0.71) 0.1230

objdump 8 5,330 5,073 +L(0.87) 0.0039
sqlite3 4 20,006 18,328 +L(0.99) < 0.0001

input shuffle AFL++

readelf 62 13,201 13,379 (0.52) 0.9118

bloatyfuzz 81 6,053 4,842 +L(1.00) < 0.0001
libpcap 72 2,739 2,639 +S(0.64) 0.3150

mupdf 14 31,699 32,179 (0.46) 0.7959

objdump 82 3,567 5,073 -L(0.00) < 0.0001
sqlite3 53 18,615 18,328 +S(0.62) 0.3930

reset AFL++

readelf 13 14,233 13,379 +L(0.97) < 0.0001
bloatyfuzz 71 5,342 4,842 +L(1.00) < 0.0001
libpcap 19 2,803 2,639 +L(0.87) 0.0039
mupdf 17 33,854 32,179 +L(0.99) < 0.0001
objdump 12 3,599 5,073 -L(0.00) < 0.0001
sqlite3 19 16,006 18,328 -L(0.19) 0.0185
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Fig. 5. The coverage (in branches) for four different tools of 24 hour runs. Displayed is the median run of ten repetitions and for

Sileo the restarts are marked. For all plots of all tested tools, have a look at our artifact on GitHub.

outweigh the disadvantages outlined in 𝑖) and 𝑖𝑖). Overall, these results show that restarting the fuzzer during a fuzzing

campaign has indeed a positive impact in terms of coverage and therefore allow us to answer our RQ2 positively.

Experiment 2: Corpus Minimization after Corpus Retention. Depending on the target, our corpus retention

strategies often generate large amounts of data, as with each restart, inputs previously found by the fuzzer can be

rediscovered (we still need to store the previous queue for coverage computation). This results in ever-increasing disk

usage for the corpus in each run. In addition to the growing disk usage, a large seed corpus has the disadvantage that

AFL++ has to process all these files during its startup calibration phase. Therefore, a more compact corpus appears

preferable for the next run after a restart occurs. AFL++ provides a script called afl-cmin, which can be used to

minimize the corpus. The script uses AWK and afl-showmap to reduce a corpus of input files. Its primary function is to

identify and retain the smallest set of unique test cases that collectively cover the diverse code paths explored by the

original corpus. By analyzing the instrumentation output generated by AFL++ using afl-showmap, it prioritizes the

retention of input files that contribute distinct code coverage, aiming to reduce redundancy.
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Fig. 6. The effect of afl-cmin after every restart to minimize the seed corpus for the next run. Displayed is the median coverage over

ten repetitions and the 60% trimmed interval.

We incorporated this functionality into our scheduler to investigate the effect of corpus minimization after a restart

and conducted an experiment using our corpus pruning and input shuffle strategy with afl-cmin. Note that due

to a bug in AFL++ 4.04c, we changed the version of all fuzzers for this experiment to the newer version 4.06c. When a

restart is triggered, afl-cmin performs the corpus minimization, and the remaining files are then used as seeds for the

next run.

In Figure 6, the performance of AFL++ is compared with corpus pruning and input shuffle to the respective

versions that are using cmin. The plot indicates that the usage of afl-cmin negatively affects the performance of corpus

pruning, leading to an earlier flattening of the coverage growth. In contrast, the impact of cmin to input shuffle is

minimal. Interestingly, the cmin strategies perform almost as good as their counterparts but then flatten earlier. The

behavior observed in the experiment is expected when considering input shadowing, where the minimization process

(focusing solely on code coverage) may discard inputs that contribute to deeper code exploration. Consequently, the

fuzzer’s ability to discover novel paths is slightly hindered, leading to less coverage achieved over time.

Experiment 3: Long-Term Run and Ensemble. We conducted a 7-day run on sqlite3 to assess if AFL++ can catch

up with Sileo over an extended period, as the 24 hour run indicated that AFL++ was closing in on Sileo over time.

Additionally, such a long run allows us to test our ensemble strategy, which requires multiple restarts to identify and

exploit the best-performing strategy. As shown in Figure 7, AFL++ catches up with corpus pruning and ensemble,

but the median never reaches the same coverage as the two Sileo strategies. When comparing corpus pruning and

ensemble, both perform equally over the entire fuzzing time. This is somewhat expected, as ensemble chooses its

modes from our corpus retention strategies, and none of these modes performed better than corpus pruning, time

travel, or tree planter on this target. Therefore, ensemble can only perform as well as the best mode for this target.

This behavior is also evident in our log files, showing that ensemble mainly switches between these three modes. The
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Fig. 7. A 7-day run on the target sqlite3, as well as another run of bloatyfuzz featuring AFL++, corpus pruning, and ensemble.

number of restarts for ensemble for this target ranges between 16 restarts (best mode: tree planter) and 89 restarts

(best mode: time travel), with a median of 31 restarts with the corpus pruning mode.

We selected a second target, bloatyfuzz, to assess the performance of ensemble with a shorter runtime of 24 hours.

This target experiences a high number of restarts within the first 24 hours for all our strategies, making it suitable for

testing with ensemble. In this experiment, we plotted the best-performing single strategy (tree planter) alongside

corpus pruning and ensemble. Examining the coverage plot in Figure 7 reveals that ensemble exhibits superior

performance and wider variance in coverage compared to corpus pruning and tree planter within the first six

hours. As the experiment progresses, ensemble maintains slightly higher variance overall than tree planter and

corpus pruning but achieves roughly the same median coverage as tree planter.

Taking a closer look, we find that the number of restarts on this target ranges between 12 and 60, with a median of

18 restarts. When looking at the best performing strategy picked by ensemble after 24 hours (across 10 repetitions), we

find the following results:

• 4/10 input shuffle, number of restarts: 13, 14, 58, 60

• 2/10 tree planter, number of restarts: 27, 30

• 2/10 time travel, number of restarts: 12, 19

• 2/10 corpus pruning, number of restarts: 13, 18

Interestingly, the best-performing individual strategy, tree planter, is not the most frequently used strategy in

ensemble for this target; instead, input shuffle is the most frequently used. However, ensemble still achieves a

higher median coverage than input shuffle, demonstrating the benefits of employing different strategies on one

target to trigger synergy effects and potentially enhance overall performance.

Experiment 4: Fixed Restart Times and Restart Examination. To assess the effects of different restart times

and to compare the effectiveness of our adaptively selected restart time with fixed restart times, we created different

fuzzers for FuzzBench based on corpus pruning. These fuzzers use fixed restart times of 30 minutes, 60 minutes, and

240 minutes, respectively. We tested these strategies on all our targets and present a subset of the results in Figure 8.

Please refer to our research artifact for the full data for all targets. Beyond achieved coverage, we study the growth of
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the corpus size for each strategy in this experiment (plots on the right side of Figure 8). Upon closer inspection of the

coverage plots, it becomes evident that the fixed 30-minute restart time has a negative impact on covered branches for

all three plotted targets. The longer restart times of 60 and 240 minutes perform slightly better than corpus pruning on

two out of three targets. On the sqlite3 target, both corpus pruning with adaptive restart time and corpus pruning

with a fixed restart time of 240 minutes outperform the other strategies and the baseline AFL++.

Studying the corpus size plots, we can see that AFL++ features a continuous corpus growth over time. This matches

our expectation that a fuzzer continuously adds new inputs to the queue, increasing its size over time. On the other

hand, restarts discard parts of the corpus, leading to a decrease of the corpus size (as the queue of older runs is stored

for coverage computation but not used by the current run and thus not included in the size computation). The fuzzers

with shorter restart times cannot build up a large corpus for each run, since the frequent restarts remove parts of the

corpus before it becomes larger. However, despite the corpus size being small compared to the two other strategies,

restarting every 60 minutes incurs no disadvantage in terms of coverage on two out of three targets. We point out that

tracking the corpus size solely visualizes how much information is discarded between runs, but it does not support a

relationship to coverage, which we measure based on the queues of all restarted runs (rather than just the latest one).

Despite the good performance of corpus pruning with fixed restarts on these targets, corpus pruning with

adaptive restarts remains the best-performing fuzzer across all targets. Overall, it demonstrates better flexibility and can

better react to the target under test, triggering a balanced number of restarts. Another drawback associated with fixed

restart times is the increasing overhead in terms of disk usage with every restart, especially with low restart times. For

instance, having a fixed restart time of 60 minutes results in 23 restarts in 24 hours, only slightly improving coverage

compared to restarting just seven times or less, but resulting in more than twice the disk usage.

Experiment 5: Sampling and Basic Block Frequency. Beyond code coverage, we analyze the benefits of fuzzing

restarts in terms of better distributing the frequencies of hit basic blocks, i. e., whether the restarts spread the fuzzer’s

attention to a more diverse set of basic blocks. To this end, we use the inputs sampled during the fuzzing runs (similar

to the experiment in Section 2). Importantly, we do not use the corpus to avoid biasing our results. To explore this

behavior, we sampled a subset of all inputs executed by AFL++, corpus pruning, and reset on three targets: libpng,

libpcap, and sqlite3. It is worth noting that, unlike the experiment in Section 2, the Sileo strategies here leverage

the coverage growth heuristic to determine when to restart, instead of fixed restart times.

We report the median coverage values for the experiment in Table 3 and visualize the corresponding heatmaps in

Figure 9. Additionally, we provide an alternative representation in Figure 10, illustrating the distribution of basic block

hits as a Cumulative Distribution Function (CDF) for all three targets. For this representation, we study how often each

edge is hit and sort them according to the number of hits (with the edge being hit most frequently being at x = 0 and

the edge hit the least being the right-most one). For instance, the program’s entry point, being the most commonly

hit basic block, is situated at the far left side of the plot. The y-axis reflects the frequency of hits for all basic blocks.

Note that the sorting is specific for each fuzzer: The edge at x = 100 may differ between AFL++ and corpus pruning,

however, in both cases it asserts that there exist 99 edges that have been hit at least as often as this one.

Analyzing the CDF plots (Figure 10) reveals that, on all targets except libpng, corpus pruning triggers edges

more frequently than the baseline, especially for edges that are visited less frequently. The CDFs demonstrate that

corpus pruning and reset trigger most edges more often than AFL++ on the libpng target. This observation is also

supported by the data in Table 3 and the visual representation in Figure 9. Both indicate that the Sileo strategies have

an advantage over AFL++ in this regard. On libpcap, only corpus pruning performs slightly better than AFL++,

Manuscript submitted to ACM



20 Nico Schiller, Xinyi Xu, Lukas Bernhard, Nils Bars, Moritz Schloegel, and Thorsten Holz

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0

2500

5000

7500

10000

12500

15000

17500

20000
Re

ac
he

d 
br

an
ch

 c
ov

er
ag

e

sqlite3_ossfuzz

Median Run: AFL++
Median Run: Sileo Corp. Pr. (30min)
Median Run: Sileo Corp. Pr. (60min)
Median Run: Sileo Corp. Pr. (240min)
Median Run: Sileo Corpus Pruning

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0

2000

4000

6000

8000

10000

12000

14000

Co
rp

us
 si

ze

sqlite3_ossfuzz

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0

2000

4000

6000

8000

10000

12000

14000

Re
ac

he
d 

br
an

ch
 c

ov
er

ag
e

libxml2_xml

Median Run: AFL++
Median Run: Sileo Corp. Pr. (30min)
Median Run: Sileo Corp. Pr. (60min)
Median Run: Sileo Corp. Pr. (240min)
Median Run: Sileo Corpus Pruning

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0

2500

5000

7500

10000

12500

15000

17500

20000

Co
rp

us
 si

ze

libxml2_xml

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0

2000

4000

6000

8000

10000

12000

14000

Re
ac

he
d 

br
an

ch
 c

ov
er

ag
e

binutils_fuzz_readelf

Median Run: AFL++
Median Run: Sileo Corp. Pr. (30min)
Median Run: Sileo Corp. Pr. (60min)
Median Run: Sileo Corp. Pr. (240min)
Median Run: Sileo Corpus Pruning

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0

5000

10000

15000

20000

Co
rp

us
 si

ze

binutils_fuzz_readelf

Fig. 8. Left: The coverage (in branches) from sqlite3, libxml2, and readelf with fixed restart times. Right: The corpus size of
AFL++, corpus pruning, and corpus pruning with those fixed restart times to showcase the number of files of the corpus that are

preserved by each restart. Displayed in each graph is the median run of ten repetitions, and for Sileo the restarts are marked.
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(a) libpng - AFL++ (b) libpng - corpus pruning (c) libpng - reset

(d) libpcap - AFL++ (e) libpcap - corpus pruning (f) libpcap - reset

(g) sqlite3 - AFL++ (h) sqlite3 - corpus pruning (i) sqlite3 - reset

10
−1

10
0

10
1

Fig. 9. Heatmaps showing the frequency of basic block hits during the median fuzzing run of AFL++, corpus pruning, and reset on

the targets libpng, libpcap, and sqlite3. Each cell represents a basic block; blue blocks ■ indicate the median baseline run hit this

basic block more frequently, and red ■ indicates the opposite.
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while reset triggers only the most frequent 1, 500 edges more often than AFL++. On sqlite3, corpus pruning covers

more edges than AFL++ and reset. Consequently, it is the only fuzzer triggering edges on the far right side of the CDF.

Interestingly, the CDF shows that AFL++ outperforms our Sileo strategies on the most frequently hit 10, 000 edges,

while corpus pruning hits its rarest 10,000 edges more frequently. We also observe this behavior when examining

Table 3 and the heatmaps themselves (Figure 9), which illustrate that on sqlite3, AFL++ outperforms corpus pruning

and reset by a considerable margin, triggering basic blocks more often but achieving less coverage compared to corpus

pruning.

Interestingly, this behavior contradicts our observations from the targets libpng and libpcap. However, it can be

explained when taking a closer look at the different heatmaps: On the two targets libpng and libpcap, all three fuzzers

achieve roughly the same coverage, while the frequency of basic block hits is higher for Sileo. This happens because

the target applications are smaller than sqlite3, and the coverage growth of all fuzzers flattens at an early stage of

fuzzing. With every restart, mostly the same parts of the code are covered again, increasing the hit frequencies on

these targets. Comparing this to sqlite3, which is significantly more complex than the other two targets, shows that

the fuzzers do not flatline within the complete 24 hour run but continuously find new coverage. The dynamic nature

of sqlite3, with continuous coverage growth, allows corpus pruning to trigger new and less frequent basic blocks

even after the 24 hour mark. If corpus pruning restarts on this target, it breaks out of the coverage plateau and has

the opportunity to (randomly) drive exploration into another part of the program. This behavior can be observed in

the heatmaps in Figure 9, where corpus pruning is more focused on different “islands”, while AFL++ distributes its

executions over the rest of the program. Direct comparison shows that these islands of red blocks are the code parts

that are not covered by AFL++ at all (indicated by a complete white rectangle blocks).

The experimental results provide valuable insights into the impact of input shadowing on different types of targets,

effectively addressing RQ1. They demonstrate that a fuzzer can derive various benefits from a restart, depending on

the complexity of the target, effectively mitigating the effects of input shadowing. The findings can be related to our

example in Algorithm 1 (see Section 2.2): in case of a small target where the fuzzer quickly flatlines, costly executions are

spent on mutating already known inputs to reach deeper code paths. However, some of these unexplored paths might be

shadowed by previously found inputs, making progress unnecessarily difficult. Here, restarts can significantly increase

Table 3. Branch coverage from libpng, libpcap, and sqlite3 of the median run from ten 24 hour runs and basic block hits that

more than twice as often triggered by the baseline ■ or our restarted fuzzer ■. For no-restarts the𝑚𝑒𝑑𝑖𝑎𝑛 − 1 run is used. A gray

background shows the best performing value in terms of median covered branches. Bold values indicate the best performance by

means of favored basic blocks for the given strategy.

#Basic Blocks favoring
Target Restarts Median #Branches ■ Baseline ■ Tweak

AFL++

libpng – 2,004 – –

libpcap – 2,970 – –

sqlite3 – 17,631 – –

no-restart
libpng 0 2,004 229 385
libpcap 0 2,950 545 545

sqlite3 0 16,952 5,383 3,081

corpus pruning
libpng 21 2,014 122 628
libpcap 13 2,938 305 695
sqlite3 4 19,831 10,341 4420

reset
libpng 23 2,020 122 522
libpcap 21 3,014 687 279

sqlite3 16 15,642 6,131 1,556
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(a) libpng

n-th frequent edge

(b) libpcap

n-th frequent edge

(c) sqlite3

n-th frequent edge

Fig. 10. Basic block frequency plot of libpng, libpcap, and sqlite3 showing the strategies corpus pruning, reset and the baseline
AFL++. Note that we assign a unique identifier to every edge and track how often each one is visited: x = 0 denotes the most frequent

edge (one that is usually executed upon every execution e. g., the program’s entry point). In contrast, the right-most value of x denotes

the least frequently observed edge (often some edge never visited). On the y-axis, we then display how often the particular edge has

been observed. A fuzzer is better if it covers more rarer edges (i. e., x is larger while y > 0) and visits rare edges more often.

the basic block hit frequencies, leading to a higher probability of encountering rare basic blocks more frequently and

triggering that code more often. Conversely, if the fuzzer spends enough time on a small target application without

restarting, it may eventually find an input that satisfies the given condition outlined in Algorithm 1. However, it likely

needs more executions due to the lack of intermediate feedback. By restarting and discarding (parts of) its state, the

fuzzer may accept a different input from the same equivalence class that may increase its probability of solving the

given condition.

On complex targets, a similar yet distinct behavior can be observed. To exemplify, let us consider Algorithm 1 in the

context of a complex target: A non-restarting fuzzer may trigger the first branch condition with a value that will never

satisfy the second condition. With the lack of feedback and the complexity of the target, the fuzzer may shift its focus
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to other parts of the program or become stuck on that segment until both conditions are successfully solved. On this

type of target, a restart has a similar effect as described previously, potentially triggering the shadowed code path and

leading to more complex and deeper code exploration. However, on complex targets, a restart can also have a contrary

effect: if the fuzzer is stuck in a deep path, a restart would allow the fuzzer to explore other parts of the code as well.

This dual impact of restarts on complex targets emphasizes their flexibility in fostering exploration and uncovering

hidden code paths.

Experiment 6: Bug-finding ability. The primary objective of a fuzzer is to identify vulnerabilities in software.

Therefore, it is crucial to evaluate whether proposed changes to the fuzzing process have an impact—positive or

negative—on the fuzzer’s ability to discover bugs. As demonstrated by our coverage experiments, Sileo has proven

its capability to achieve more coverage. However, it is unknown if this translates to a better bug-finding capability.

In scenarios where the coverage of Sileo matches the one of the baseline, Sileo still exhibits the ability to trigger

blocks more frequently, theoretically enhancing its chances of discovering more bugs. We conduct eight bug-finding

experiments using FuzzBench, where a small amount of bugs is injected in specific targets, providing us with a ground

truth. We summarize the results in Table 4. Since none of the fuzzers was able to trigger a bug on three out of eight

targets (arrow_parquet, file_magic, and mbedtls), we omit these targets subsequently. The full report covering

all targets can be found in our artifact. We analyzed the final corpora and the crashes directories of AFL++, corpus

pruning, and ensemble to figure out how often the fuzzers were able to trigger crashes during the ten runs, and we

depict these results in the table column Runs w/ Bugs. The results indicate that the Sileo strategies are able to trigger

bugs in more runs and, according to FuzzBench, also found more bugs on all targets compared to our baseline AFL++.

Notably, corpus pruning triggers bugs in seven out of ten runs for bloatyfuzz and in six out of ten runs for aspell,

compared to only one run for AFL++ in each case. Additionally, corpus pruning triggered bugs in two out of ten runs

for libxml2, where AFL++ and ensemble failed. Overall, both Sileo strategies were able to trigger bugs in more runs,

which coincides with our results and our observations regarding input shadowing. These results allow us to positively

answer RQ3, indicating that fuzzing restarts can help to discover more bugs in software.

5.2 Overhead

Restarting the fuzzing process introduces various types of overheads due to how we restart the underlying fuzzer. We

measure disk usage, total fuzzing time, and total executions after 24 hours and plot this data in Figure 11. In addition

to assessing three targets from our coverage evaluation, we also evaluated the overhead of our corpus minimization

experiment. The AFL++ fuzzer_stats file provides measurements for executions (execs_done) and fuzzing runtime

(run_time), while we determined disk usage over all queue files for AFL++ and all queue files plus new seed files per

run for Sileo.

Disk Usage. In terms of disk usage, Sileo exhibits the most overhead compared to AFL++. Particularly, the disk usage

of input shuffle reaches extremely high values, notably on bloatyfuzz, where AFL++ uses only 11MB, contrasting

Sileo’s 36,870MB (3352 times the disk usage of AFL++). While lower, corpus pruning and reset still feature a disk

usage multiple times that of AFL++. The primary issue lies in preserving the corpus from previous runs, where we

store the queues of each restarted run.

With each restart, the fuzzer finds similar inputs that produce the same coverage as in previous runs, offering no

further advantage but costing disk space (as we store the same files multiple times). This behavior is most pronounced in

input shuffle, where the complete generated corpus is used and stored for the next run. Consequently, two identical
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Table 4. Bugs found in 24 hour runs on five FuzzBench targets. We track the number of total unique bugs found, in how many runs

one or more bugs were located, and statistics on the minimum, median, and maximum number of bugs per run. We grayed out the

zeros to allow for better readability.

Target Median Bugs
Coverage Unique In Runs Min Median Max

AFL++

bloatyfuzz 4569.0 1 1 / 10 0 0 1

harfbuzz 10029.5 2 10 / 10 1 1 1

libxml2 18572.0 0 0 / 10 0 0 0

aspell 3192.0 2 1 / 10 0 1 2

grok 5958.5 1 10 / 10 1 1 1

Total 6 22 / 50 2 3 5

corpus pruning

bloatyfuzz 5560.0 1 7 / 10 0 1 1

harfbuzz 10072.0 5 10 / 10 1 1 1

libxml2 18793.0 1 2 / 10 0 0 1

aspell 3437.0 2 6 / 10 1 2 2

grok 6013.0 1 10 / 10 1 1 1

Total 10 35 / 50 3 5 6

ensemble

bloatyfuzz 5520.5 1 6 / 10 0 1 1

harfbuzz 10069.0 4 10 / 10 1 1 1

libxml2 18788.5 0 0 / 10 0 0 0

aspell 3215.5 2 4 / 10 0 2 2

grok 6031.5 1 10 / 10 1 1 1

Total 7 30 / 50 2 5 5

directories containing the same files are stored (the fuzzer queue and the new seed directory) for every run. Storing

both directories is necessary because input shuffle renames all input files and adds a random prefix to each file,

introducing an additional level of randomness to the seed processing of AFL++. An alternative approach to improve the

input shuffle strategy in the future could be to use the last queue directory as the new seed directory without copying

and renaming all inputs. This would reduce disk usage without affecting runtime, executions, or overall performance.

When comparing corpus pruning and input shuffle with their respective afl-cmin versions, the data reveals that

for input shuffle, afl-cmin reduces disk usage to approximately one-third of the run that does not utilize afl-cmin.

Interestingly, for corpus pruning, the opposite trend is observed: disk usage increases slightly. We attribute this to

the necessity for the fuzzer to rebuild the corpus from the remaining seeds after minimization without being able to

explore new program behavior.

Total Fuzzing Time. When a restart occurs, the underlying fuzzer—in our case AFL++—is stopped, and our corpus

retention strategies are applied to the generated corpus. The remaining files, which serve as new seed files for the next

fuzzing run, are copied to the new seed directory. This process takes some time, and the processing of these seeds

during the so-called startup calibration phase of AFL++ also reduces the overall fuzzing time. The reduction depends on

the number of leftover files, ranging from a few seconds to almost an hour. In a 24 hour run with multiple restarts,

this shortens the total fuzzing time. As depicted in Figure 11, the total fuzzing time is reduced by 1.5 hours for input

shuffle, whereas the reduction is negligible for our other strategies.
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Interestingly, corpus pruning has an overhead of 0.1% in terms of runtime compared to reset on sqlite3. This is

due to the higher number of restarts for reset and the vast number of initial seed files that come with this specific

target. The abundance of initial seeds, combined with the high number of restarts, results in slightly less fuzzing time

for reset. Despite corpus pruning retaining both the generated corpus and the initial seeds, it has fewer restarts.

Comparing corpus pruning and input shuffle with their respective afl-cmin versions shows that the reduction

of inputs positively impacts input shuffle. The reduced number of inputs speeds up the startup calibration phase,

compensating for the time afl-cmin takes for the corpus minimization itself. This is in contrast to corpus pruning,

where the startup calibration phase reduces the overall fuzzing time by 0.1%, which is negligible here, but the corpus

minimization adds an additional overhead of 0.2%. Since most of the time is lost during the startup calibration phase,

we tested turning off this feature using the respective environment variable provided by AFL++. We found that this had

a negative impact on the fuzzer in terms of coverage, so we refrained from using this setting for our evaluation.

Total Executions. Examining the total executions reveals that Sileo achieves significantly more executions than

AFL++. We speculate that this occurs when the fuzzer, in our case AFL++, encounters a large number of initial seed

files. This abundance of files leads to a spike in execs per second after restarting the fuzzing process because the startup

calibration phase prioritizes testing the fastest seeds first. This effect is particularly pronounced on the target sqlite3

with input shuffle, where the executions per second increase significantly due to the generation of a large corpus.

However, despite the high number of executions, input shuffle does not gain any advantage over corpus pruning in

terms of coverage. Comparing the executions of corpus pruning and input shufflewhen using corpus minimization

reveals a significant drop in the total number of executions for both. Upon investigating the corpus minimization

statistics, we found that afl-cmin maintains the corpus size within the range of 2000 to 6000 corpus files for both

strategies. Without afl-cmin, the number of corpus files reused as seeds can be much higher.

6 DISCUSSION

In the following, we discuss potential threats to validity, address the differences between code coverage and block

frequency, and outline an optimized version of our input shuffle strategy.

Threats to Validity. It is essential to ensure the validity of the conclusions drawn from empirical experiments. Our

research emphasizes three key dimensions that are particularly relevant to this goal. We outline our assumptions and

describe our steps to ensure that our experiments maintain their validity.

External validity. To test our approach, we select different types of targets from Google’s test suite FuzzBench for

our evaluation. We used FuzzBench because it is a widely used benchmark framework for fuzzing. Furthermore, we

also performed one of our coverage experiments (objdump) outside of FuzzBench to demonstrate that our results are

reliable and not biased by using FuzzBench.

Internal validity. Due to the non-deterministic nature of the fuzzing process, we repeated our experiments ten times to

achieve statistical significance and calculated several statistical metrics to analyze our experimental results. Furthermore,

we used the well-established and proven fuzzing test suite FuzzBench to orchestrate and evaluate our experiments.

Construct validity. Finally, as a third threat to validity, we ensure that our evaluation measures what it is supposed to

measure. To avoid discrepancies between the baseline and our tested strategies, we ensure they all rely on the same

fuzzer configuration and the same fuzzer version of AFL++.
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Fig. 11. Disk usage, total executions, and total fuzzer runtime of different targets for the median run.
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Code Coverage vs. Block Frequency. In scientific literature and practice, code coverage is one of the standard metrics

used to compare the performance of fuzzers. If a fuzzer achieves a high code coverage, it means that it can potentially

trigger more bugs, as the fuzzer must reach buggy code in the first place. This paper introduces block frequency as a

novel metric to augment, rather than replace, code coverage. Measuring block frequency can help understand which

basic blocks the fuzzer has focused on the most. Visiting a basic block more often may be beneficial if the state between

visits differs, as bugs may not occur for a specific state but can occur for another.

Input Shuffle with Reduced Overhead As discussed in Section 5.2, using Sileo’s corpus retention strategies

introduces an overhead in terms of increased disk space usage. This is particularly pronounced when employing the

input shuffle strategy, which significantly raises disk usage compared to all other strategies and AFL++. The design

of these strategies involves copying the queue directory into a new seed directory, shuffling all files, and using this

directory as the new seed directory for the underlying fuzzer. This copying is necessary to avoid modifying the queue

directory of the run, such as when deleting files using corpus pruning. However, input shuffle differs from our

other retention strategies in that nothing from the actual corpus is deleted; the entire corpus is used for the next run, and

thus, no modification of the actual queue directory occurs, aside from shuffling all files. Given these considerations, we

propose an optimized version of the input shuffle strategy: after a restart, this strategy sets the new seed directory

to the old queue directory, thereby skipping the copy and shuffle process and minimizing the associated overhead. This

strategy requires that the AFL++ environment variable AFL_SHUFFLE_QUEUE is set. We have tested this optimized

strategy, and our initial results align with our expectations: the coverage performance is slightly higher compared to

the one of input shuffle, and the strategy’s overhead is reduced. We recommend using this strategy instead of input

shuffle and providing the implementation alongside our artifact.

7 RELATEDWORK

Our work is closely related to several previous works, and we now place our work in the context of the literature.

Resetting State. Resetting the state or starting over with a clean environment has been observed to have beneficial

effects in various areas. For example, Zaidi et al. [69] discuss how reinitializing a neural network can significantly

improve training results. They note that this phenomenon is surprisingly understudied and underused. In the field of

program synthesis, Koenig et al. [33] recently showed that restarting stochastic synthesis tasks can boost the speed of

synthesis by an order of magnitude. Similar to fuzzing, their initial observation is that synthesis tasks advance through

a series of plateaus, which tend to be heavy-tailed and, thus, can get stuck without making further progress. Even in

biology, clean “restarts” can be beneficial [35].

Also, in the research area of genetic algorithms and evolution strategies, (randomly) resetting the state to overcome

local minima has a long history [14, 21, 23]. Ghannadian [23] presents a genetic algorithm that replaces traditional

mutation operation with a random restart strategy. This implies that instead of mutating individuals in the population,

the algorithm periodically restarts the search from a random point. This modification aims at improving exploration in

the search space and avoiding premature convergence to local optima. However, Fukunaga [21] shows that the approach

of scheduled restarts can be competitive over dynamic restart strategies, while pointing out that a combination of

dynamic and scheduled restarts might be an interesting direction. This behavior can also be observed in our results,

where we compared statically scheduled restarts (corpus pruning- 30min, 60min, 240min) with the dynamic restart

approach of the same strategy. However, our results indicate that the number of statically scheduled restarts leading to

high success depends on the individual target, making the dynamic approach more reliable in practice over all targets.
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Coverage Plateaus. Similar to our approach, previous work has identified coverage plateaus as an excellent point in

time to help the fuzzer. According to Lemieux et al. [36], the phenomenon known as coverage stall or coverage plateau

occurs when a search algorithm, after undergoing several mutation iterations, fails to exhibit any further improvements

in code coverage. Despite generating multiple mutated test cases, none of them succeed in covering any previously

unexplored code within the program under test. Hence, the authors use the term “coverage stall” to describe this state.

While Sileo opts to restart the fuzzer in such a case, Lemieux et al. [36] propose to use Large Language Models (LLMs)

tailored towards code generation, such as Codex, to “unstuck” the fuzzer. Outside of the fuzzing community, other

works show that restarts can be used to escape plateaus in boolean satisfiability problems [27].

While coverage plateaus worked well for our prototype, other indicators may exist. In particular, Liyanage et al. [38]

recently discussed the extrapolation of coverage rates. While their goal was to find a stopping criteria for fuzzing, which

may run indefinitely otherwise, we can repurpose any such approach and restart a fuzzer once the estimated coverage

rate falls below some threshold.

Fuzzing. Fuzzing has a long and successful history, starting with Miller’s initial work [44]. One particularly important

hallmarks has been the introduction of coverage feedback, popularized by AFL [70], which spurred a vast body of

subsequent research [8, 9, 49]. These works then focused on even more heavyweight feedback techniques such as

taint tracking [12, 65] or symbolic execution [10, 50, 68], improving seed scheduling [9, 59], or proposing entirely new

approaches [5, 11, 47, 53, 58, 63].

The success of fuzzing has not only lead to industry adoption [43] but has seen it ported to many other fields and types

of applications than only Linux userspace binaries. In particular, work has been done to test kernels [24, 30, 31, 56, 62],

network applications [4, 39, 45, 48, 55], JavaScript engines or other browser components [6, 25, 28, 60, 64, 67, 72], and

firmware [1, 17, 51, 52, 57, 71]. With the rise of neural networks and large language models, new fuzzing approaches

leveraging these techniques have been developed [15, 36, 41, 46, 58]. Recently, concurrent work by Wu et al. [66] uses a

similar exemplary function for motivating their fuzzer design as we do in Algorithm 1. While we restart the fuzzer to

mitigate input shadowing, their approach envisions the generation of so-called phantom programs, which reduce the

nested conditional statements, so that they can be solved independently by the fuzzer, enabling it to make progress

faster. Thus, their technique is closer to approaches such as laf-intel [34].

8 CONCLUSION

In this work, we present a starting point for mitigating the negative impact of input shadowing on fuzzing campaigns.

We found that the novelty search used by fuzzing algorithms limits its practically reachable input space. To mitigate

this downside of the otherwise excellent novelty search, we propose a fuzzing campaign scheduler called Sileo that

restarts fuzzers adaptively to diversify their attention. Our results indicate that Sileo effectively distributes the hit

block frequencies and better spreads the fuzzer’s attention across different basic blocks. Restarting the fuzzing process

proves beneficial in overcoming input shadowing. Inputs previously deemed non-interesting due to lack of novelty

in terms of new coverage are given a renewed chance for exploration. The dynamic interaction between the bitmap

coverage tracking, the preserved corpus, and the restart heuristic underscores Sileo’s adaptive approach, ensuring a

more comprehensive and nuanced exploration of the program’s input space.
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