
A Binary-level Thread Sanitizer or Why Sanitizing on the Binary Level is Hard

Joschua Schilling1, Andreas Wendler2, Philipp Görz1, Nils Bars1, Moritz Schloegel1, and Thorsten Holz1

1CISPA Helmholtz Center for Information Security
2Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract
Dynamic software testing methods, such as fuzzing, have be-

come a popular and effective method for detecting many types

of faults in programs. While most research focuses on targets

for which source code is available, much of the software used

in practice is only available as closed source. Testing software

without having access to source code forces a user to resort

to binary-only testing methods, which are typically slower

and lack support for crucial features, such as advanced bug

oracles in the form of sanitizers, i. e., dynamic methods to

detect faults based on undefined or suspicious behavior. Al-

most all existing sanitizers work by injecting instrumentation

at compile time, requiring access to the target’s source code.

In this paper, we systematically identify the key challenges

of applying sanitizers to binary-only targets. As a result

of our analysis, we present the design and implementation

of BINTSAN, an approach to realize the data race detec-

tor TSAN targeting binary-only Linux x86-64 targets. We

systematically evaluate BINTSAN for correctness, effective-

ness, and performance. We find that our approach has a run-

time overhead of only 15% compared to source-based TSAN.

Compared to existing binary solutions, our approach has bet-

ter performance (up to 5.0× performance improvement) and

precision, while preserving compatibility with the compiler-

based TSAN.

1 Introduction

A current central challenge of dynamic software testing is

the lack of better and more widely available bug oracles,

i. e., methods used to identify software faults [4]. Most dy-

namic software testing techniques, like the widely successful

fuzzing, cannot discover many types of faults but rely on such

bug oracles. Thus, dynamic bug-finding methods, called sani-

tizers, are often applied to uncover more types of faults. Gen-

erally speaking, these sanitizers are commonly implemented

as runtime checks embedded into the program [52]. Sanitizers

identify and uncover faulty behavior during program execu-

tion that cannot be detected otherwise. Over the years, various

sanitizers for different types of software faults have been de-

veloped, and some of them are widely used in practice [52].

However, most sanitization techniques are unavailable on the

binary level, limiting the capability of observing software

faults to timeouts and crashes. This affects fuzzers as well as

the dynamic testing of targets, which cannot be fuzzed easily.

While naive dynamic testing supports targets without

source code, more advanced approaches, such as fuzzing,

rely on compile-time instrumentation to steer the testing

process. Without source code, they fall back to signifi-

cantly more costly mechanisms that collect feedback at run-

time [17, 22, 23, 25, 36, 42, 57, 60], resulting in severe per-

formance penalties. Only recently, research has started to

investigate how compiler optimization-like techniques can

be used to enhance binary-only fuzzing [33, 34], but other

problems remain. Crucially, most existing binary-only sani-

tizing approaches [6, 11, 35, 50] often rely on slow dynamic

instrumentation approaches. Thus, these new advances in fast

binary-only fuzzing highlight the need for appropriately fast,

statically instrumented binary-only sanitizers. A dedicated

effort to port such sanitizers to the binary level is needed, as

undertaken by RETROWRITE [12], which allows for instru-

menting binary targets with the popular Address Sanitizer

(ASAN) instrumentation. To the best of our knowledge, there

have been no further attempts at porting other sanitizers, such

as MSAN (detector for uninitialized memory reads), UBSAN

(undefined behavior detector), or TSAN (data race detector)

to the binary level using static binary instrumentation.

In this paper, we study the most popular sanitization meth-

ods in practice from a binary-only perspective. First, we sys-

tematically analyze the challenges of porting these methods

to the binary level, uncovering several obstacles that must

be addressed. More specifically, we demonstrate that it is

likely infeasible to transfer UBSAN to the binary level. For

MSAN, we find that an implementation would be very com-

plex, incompatible with its source-based version, and it would

likely incur a significant performance overhead. On the other

hand, a binary port of TSAN is challenging but generally

feasible and would bring state-of-the-art data race detection



with the speed of static instrumentation to binary-only targets.

Based on this analysis, we present the design, implementa-

tion, and evaluation of BINTSAN, an efficient and effective

thread sanitizer on the binary level for Linux x86-64 targets.

Our evaluation shows that BINTSAN can uncover data races

on the binary level, while also maintaining a low overhead,

outperforming existing binary-level solutions, and exhibiting

fewer false positives.

In summary, we make the following key contributions:

• First, we systematically analyze the challenges prevent-

ing us from porting sanitization methods to the binary

level. We define several success criteria and highlight

how existing solutions fit these criteria.

• Based on this analysis, we demonstrate how to over-

come these challenges by designing and implementing

BINTSAN, our prototype of a binary-only version of the

popular thread sanitizer TSAN. Thereby, we introduce

novel heuristics to identify atomic operations and pro-

pose several optimizations to minimize the performance

impact of binary sanitizers.

• We evaluate our prototype implementation and find that

BINTSAN outperforms existing tools in terms of perfor-

mance and error detection, while preserving compatibil-

ity with compiler-based TSAN.

We open source our implementation, evaluation scripts,

and data at https://github.com/CISPA-SysSec/binary-

tsan.

2 Challenges for Binary Sanitizers

We now introduce and discuss two main technical barriers that

need to be overcome by binary sanitization methods, define

success criteria for binary sanitizers, and assess how existing

sanitizers may be ported to achieve the outlined criteria.

2.1 Assessment of Technical Barriers

Barrier I: Information Loss. The first barrier is the infor-

mation loss caused by the compilation process. Binary sani-

tizers need to reconstruct this lost information to determine

the correct locations for sanitization code, while maintaining

the semantics of the binary. The reconstruction often depends

on heuristics, which usually lead to inaccuracies.

Typical categories of information lost during compilation

are control flow information, types, memory order, signed-

ness, and debug information. This information loss is caused

by conceptual differences between the source language and

the target architecture. Undefined behavior, for example, is a

concept used in high-level languages like C/C++ to guide com-

piler optimizations. However, there is no concept of undefined

behavior on the binary level, as only concrete instructions are

emitted.

Barrier II: Conceptual Differences in Program Represen-

tations. The second barrier encompasses the conceptual

differences in the program representations. Different repre-

sentations of a program (source code, intermediate represen-

tation (IR), and assembly) have different properties, which

can either simplify or impede static analysis and hence need

to be considered during sanitizer development. In the scope

of this work, we focus on x86-64 binaries; thus, we focus on

conceptual differences between x86-64 assembly and IRs, on

which source-based sanitizers operate.

In practice, this results in several conceptual differences:

While an IR can support an infinite number of registers, phys-

ical hardware has a limited number of registers. Furthermore,

an IR using static single-assignment form (SSA) ensures that

every register is assigned exactly once, while assembly can-

not offer this property. This fundamentally impacts binary

analysis, as the register state needs to be considered. Fur-

thermore, an IR usually has a reduced instruction set (RISC),

while many instruction set architectures support a complex

instruction set (CISC). The x86-64 architecture, for example,

supports nearly a thousand unique mnemonics and over three

thousand instruction variants [30]. A binary sanitizer must

support every instruction, so assembly is often lifted to an IR,

which can cause inaccuracies.

2.2 Success Criteria

Based on the previously described challenges, we identify the

following five success criteria for binary sanitizers:

Correctness. The semantics of the target program must be

retained and not be affected by the introduced instrumentation.

Effective Error Detection. A binary sanitizer should effec-

tively detect issues and potential vulnerabilities. While this

may be done differently from its source-based counterpart,

both methods should detect the same bugs and minimize false

positives and false negatives.

Performance. While multiple dynamic instrumentation-

based sanitization tools for binaries exist [11, 16, 35], one cru-

cial weakness of these dynamic approaches is a considerable

performance degeneration [34]. However, to a smaller degree,

this is also a problem for tools based on static binary instru-

mentation, which can introduce unnecessary instrumentation

that incurs overhead during binary rewriting and runtime. In

any case, a binary sanitizer should strive to reduce runtime

overhead.

Compatibility. A binary sanitizer should integrate with

other tools. Ideally, the sanitizer should be compatible with

already existing fuzzing frameworks, pipelines, or ecosys-

tems, such that it can be seamlessly incorporated into existing

tooling. This includes compatibility with source-based coun-

terparts for projects with only partly available source code.

The resulting method encourages a wider adaption within the

community [52]. This is especially important for sanitizers,

https://github.com/CISPA-SysSec/binary-tsan
https://github.com/CISPA-SysSec/binary-tsan


which depend on continuous information flow, i. e., informa-

tion propagated from one part of the program to another.

Scalability. Binary sanitizers should be applicable to as

many commercial off-the-shelf (COTS) binaries as possible,

including large binaries, binaries with exception handling,

and binaries that have been obfuscated or stripped. Another

significant difference to source-based sanitizers is that bina-

ries commonly lack debug symbols. This results in additional

challenges for the user of a binary sanitizer, especially when

the binary sanitizer is used to aid the debugging process. Thus,

binary sanitizers should support debug symbols if available

but should also be functional for targets without them.

2.3 Assessment of Source-Based Sanitizers

Based on the discussed challenges and success criteria, we

now analyze the feasibility of porting the four most popu-

lar source-based sanitizers to the binary level. While var-

ious sanitizers have been proposed in the literature [52],

we focus on the four static-rewriting-based sanitizers in-

cluded in modern compilers [20]. Their availability, ease

of use, and continued maintenance lead to a wide adoption

within the community. Namely, these four methods are ad-

dress sanitizer (ASAN) [48], undefined behavior sanitizer

(UBSAN) [49], memory sanitizer (MSAN) [53], and thread

sanitizer (TSAN) [46, 47].

ASAN can be applied well to binary targets in general, as

its instrumentation is relatively lightweight, and the ASAN

runtime library implements most logic. For example, han-

dling heap red zones is part of the runtime library and does

not require any binary instrumentation. While a binary port

of ASAN is generally feasible, the loss of information im-

pairs the effectiveness of a binary version of ASAN, as can

be seen for RETROWRITE [12]. For example, RETROWRITE

cannot sanitize global variables or individual stack objects.

While RETROWRITE comes with its own AFL instrumenta-

tion for fuzzing and is compatible with ASAN, its rewriting

framework limits its applicability to PIC Linux binaries with-

out C++ exception handling. Still, it causes a performance

overhead of 50-70% [12].

UBSAN is different from all other sanitizers, as it uses

a multitude of small individual checks, which all need an

independent implementation. However, the major issue with

a binary version of UBSAN is that while undefined behavior

can be used for optimization during compilation, this concept

no longer exists on the binary level. Instead, the original

intent needs to be reconstructed to decide if the source code’s

behavior was undefined. This is a challenging, error-prone

task. According to our analysis, out of 28 checks provided

by UBSAN, only ten can be recreated, even if only partially,

for binary targets. This already assumes using heuristics to

differentiate between signed and unsigned types. A complete

list of these checks can be found in Appendix A. The majority

of the (partly) possible checks are related to integer overflows.

Other checks require knowledge of the source code, e. g.,

for alignment, correct usage of compiler builtins, or function

signatures to correctly resolve indirect calls. Hence, we expect

that the error detection capabilities of a binary-level UBSAN

are so limited that we consider a binary port of UBSAN to

be likely infeasible.

MSAN features a large runtime library for uninitialized

memory detection. However, MSAN’s instrumentation is

rather complex. The primary reason is that uninitialized mem-

ory needs to be correctly tracked throughout the program’s

execution. Memory state is stored in so-called shadow mem-

ory. Shadow propagation is used to update the memory state

if the memory is accessed or altered. On the binary level, this

is even more complex since the contents of registers can in-

fluence the initialization state of memory. A typical example

is loading a possibly uninitialized memory into a register and

storing the register’s content in another uninitialized memory

location. Thus, to implement shadow propagation, the state

of every register and its contents has to be considered. As the

concept of shadow registers is not part of the source-based

MSAN version, this would cause a compatibility break. More

importantly, a CISC architecture like x86-64 is unsuitable for

shadow register propagation, as it would require providing

specific instrumentation for all instructions that may change

the value and initialization state of the contents of registers,

which is a significant part of the instruction set. Thus, we ex-

pect a binary version of MSAN to have a severe performance

overhead and require a lot of effort to port its error detection

mechanisms.

TSAN requires rather lightweight instrumentation, as only

memory accesses have to be instrumented, and the detection

logic is delegated to a runtime library. However, the memory

order of atomic operations is lost during compilation. The

six possible memory orders in C++ [40] result in three differ-

ent sequential models that are used in practice: In ascending

order of guaranteed properties, these are relaxed, acquire-

release, and sequential-release. These sequential models dif-

fer substantially from the memory consistency model used

by x86-64. The most popular memory model that is consis-

tent with this architecture is called the total store ordering

(TSO) model [37]. This memory model is generally as strong

as the acquire-release sequential model, but weaker than the

sequentially consistent model. Similarly, the information on

atomicity itself is often lost during compilation. Therefore,

heuristics must be developed to identify atomic variables to

compensate for the loss of information. Overall, we believe

a binary port of TSAN to be feasible. While such an imple-

mentation would partly have to rely on heuristics to overcome

the aforementioned challenges, it would bring state-of-the-

art data race detection to the binary level. This includes all

benefits of modern-day TSAN, like fast static instrumenta-

tion with only minor performance overheads, a combination

of lockset and happens-before analysis, and the support of

high-level and low-level synchronization mechanisms, which



leads to lower false positive rates compared to other tools. In

the following section, we present our design and the proto-

type implementation of a binary-level thread sanitizer called

BINTSAN. As part of our evaluation, we assess how well our

approach fulfills the previously defined success criteria.

Our analysis suggests that the information loss and

conceptual differences between binary executables and

source code make a binary-level implementation of UB-

SAN likely impossible and one of MSAN very chal-

lenging. However, the concepts behind the sanitizers

ASAN and TSAN can be applied on the binary level.

3 BINTSAN: Binary Thread Sanitizer

In the following, we introduce the design and implementation

of BINTSAN, a binary-level method for thread sanitization.

3.1 High-level Overview

The architecture of our approach and the prototype imple-

mentation of BINTSAN is shown in Figure 1. The input to

our approach is the binary file to be instrumented, which is

done using binary rewriting techniques. An important design

principle is to use the TSAN runtime library as much as pos-

sible, since reusing the runtime library allows BINTSAN to

be fully compatible with the source-based TSAN. The sani-

tizer instrumentation is implemented as an extension of the

binary rewriting framework. By following this approach, we

can better integrate with existing fuzzing tooling, e. g., further

instrumentation plugins can be added, such as coverage feed-

back for a fuzzer. Finally, the resulting instrumented binary

is dynamically linked against the TSAN runtime library and

can be used to test a target for potential data races.

3.2 Binary Rewriting Framework

Since binary rewriting is an established technique, we chose

an existing binary rewriting framework that provides the func-

tionality to address the challenges discussed in Section 2.

As the framework can have a major impact on fulfilling the

success criteria of the resulting sanitizer, the choice needs

to be carefully weighed. For our prototype, we identified the

following key criteria for an ideal framework:

1. supports arbitrary rewriting of x86-64 Linux ELF bina-

ries and supports rewriting of PIC and non-PIC binaries,

2. refrains from heuristic analysis methods for rewriting

that may lead to incorrect binaries,

3. is applicable to COTS binaries, including C++ exception

handling,

4. supports analysis routines used to guide sanitization,

e. g., call graph and control flow graph reconstruction,

register analysis, etc.,

Binary Instrumentation Framework

Sanitizer Plugins

Original
Binary

Instrumented
Binary

Sanitizer Runtime
Library

Figure 1: A high-level overview of the interactions between

the different components of the binary thread sanitizer.

5. incurs only a minimal runtime performance overhead,

6. supports integration with existing fuzzing tools (e. g.,

AFL coverage feedback instrumentation), and

7. can use debug information (if present).

We initially considered the following six static rewrit-

ing frameworks for BINTSAN: E9patch [13, 19], Egal-

ito [56], Multiverse [2], Ramblr [54], RETROWRITE [12],

and ZIPR [21, 24]. While we could not find any framework

that satisfies all of our criteria, we chose ZIPR since it came

closest. There are two criteria that ZIPR does not fulfill. The

first is using heuristics, which can cause issues with specific

binaries. Additionally, ZIPR does not handle debug informa-

tion. To support debug information, we extended the ZIPR

framework accordingly. Thus, our implementation is built

upon a modified fork of ZIPR1. Note that this custom ZIPR

version is not required to run BINTSAN; we have success-

fully tested BINTSAN with various unmodified versions of

ZIPR as well.

3.3 Data Race Detection

To implement data race detection logic for BINTSAN, we

base our implementation on the runtime library of the source-

based TSAN [46]. Here, a hybrid approach of two analyses is

used to maximize detection and minimize false positives [31,

46, 47]: In a lockset analysis [44], all locks held by a thread are

tracked, and data races are detected as two threads accessing

the same memory location (at least one writing), without them

both holding the same lock. In a happens-before analysis [28],

the partial ordering of events in a program is tracked. Happens-

before relations are created by synchronization events, or

within a thread due to execution order. A data race is detected

if two accesses from different threads happen to the same

memory (at least one writing) and are not ordered with respect

to each other.

As the clang version of TSAN only provides a static

library, we use the dynamic library implemented for gcc

(version 11.2; note that the library, and thus BINTSAN, is

compatible with other versions, as the interface is stable).

When linked against an application, system calls and com-

1based on commit 96b868a4ce6a703db4703164d3b1250625d80a3e

https://git.zephyr-software.com/opensrc/zipr/-/commit/96b868a4ce6a703db4703164d3b1250625d80a3e


1 mov cs:Global , edi

2 retn

Listing 1: Exemplary compilation of function assigning

first argument to a global variable.

1 push rbx

2 mov ebx, edi

3 mov rdi, [rsp+0x8]

4 call __tsan_func_entry

5 mov edi, offset Global

6 call __tsan_write4

7 mov cs:Global , ebx

8 call __tsan_func_exit

9 pop rbx

10 retn

Listing 2: Same function with TSAN instrumentation.

mon C/C++ standard library functions are hooked. This is

done to check memory accesses via these calls for data races

and to identify thread creation and synchronization primitives,

which thus can be detected without modifying the standard

library.

3.4 Instrumentation

To enable a data race detection functionality compatible with

TSAN in BINTSAN, we must correctly instrument the re-

spective system calls and standard library functions on the

binary level. In addition to the sanitization instrumentation,

TSAN adds instrumentation to output meaningful call stacks

in case a data race is detected. Both types of instrumentation

are mimicked by BINTSAN as closely as possible.

We now take a look at how Listing 1 is instrumented by

TSAN, which can be seen in Listing 2. Both listings show

the generated assembly code for a function that sets a global

variable to the argument given to the function. The original

function does so with only two assembly instructions. In con-

trast, the same function compiled with TSAN contains ten

instructions with three different function calls to the TSAN

library. Lines 3, 4, and 8 are the call stack instrumentation

to manage the shadow stack. Lines 5 and 6 are the instru-

mentation for the memory access itself. They are inserted

before the original instruction that writes the global variable

in Line 7. Line 5 loads a pointer to the global variable into

the argument register rdi. The following function call to the

TSAN library in line 6 checks the memory access for a data

race. The remaining instructions are needed for state saving.

Lines 1 and 9 save and restore the state of the register rbx;

thus, it can be freely used in between. In line 2, rbx can now

be used to save the function parameter so that rdi can be used

as a parameter for the call stack instrumentation call in line 4.

During instrumentation, BINTSAN iterates over all instruc-

tions and identifies all operands that access memory. For each

operand, the corresponding instrumentation code is inserted.

Furthermore, three distinct properties are identified and re-

ported to the runtime library for each memory access. These

are the address of the access, the type of access (read or write),

and the number of affected bytes. The access type and the num-

ber of affected bytes are statically known and are passed to

the runtime library implicitly via the inserted instrumentation.

For example, the function __tsan_write4 reports a 4-byte

write access. On the other hand, the memory access address

is not statically known and is passed as the first argument of

this function.

Another challenge is the highly complex x86-64 instruc-

tion set, which contains various memory access methods. Cur-

rently, BINTSAN covers the use of explicit operands, condi-

tional memory operands, and string instructions. These are

handled by recreating the condition check or, respectively,

calculating the length of the accessed memory for string oper-

ations. The prototype implementation of BINTSAN does not

handle a few instructions prone to race conditions. I/O instruc-

tions like in or out are not handled, as these instructions are

privileged and cannot be used in user-space applications. Fur-

thermore, instructions like maskmovdqu, which have implicit

memory operands but do not conform to a specific instruc-

tion class, are not handled either. In our experience, these

instructions are rarely used in practice.

3.5 State Saving

As part of the instrumentation, special care has to be taken

to ensure that the semantics of the original program flow are

not changed. After each instrumentation point, the same state

as before the instrumentation has to be restored. This is espe-

cially difficult in BINTSAN’s case, as the added instructions

usually contain calls to the TSAN runtime library, which

may arbitrarily change the program’s state. To avoid interfer-

ence of our state changes with the normal program execution,

BINTSAN stores various registers at the beginning of each

instrumentation point and restores the original values after

exiting the instrumentation code. This includes all general

purpose registers that are not maintained during function calls

according to the System V ABI [32], the RFLAGS registers,

and the XMM registers xmm0 to xmm15. Other registers, like

the FPU registers, are not saved and restored, as the TSAN

runtime library does not use them.

The state-saving mechanism can potentially create sig-

nificant performance overhead. To minimize this overhead,

BINTSAN carefully selects the registers that must be saved

and restored. BINTSAN includes multiple optimizations, as

explained in Section 3.9. These optimizations include mini-

mizing the set of used registers in the runtime library as well

as a custom dead register analysis, which identifies registers

that are not alive at the point of instrumentation and, therefore,

do not need to be saved and restored.



3.6 Call Stack Instrumentation

The previously described memory access instrumentation

is sufficient to detect data races. However, to produce error

messages with meaningful stack traces for such data races,

BINTSAN also needs to support the custom shadow stack

implementation of the TSAN runtime library. This requires

tracking the current call stack for each thread in the runtime li-

brary by calling __tsan_func_entry for each function entry.

Respectively, a call to __tsan_func_exit is performed on

function exit, removing the topmost object from the shadow

stack. BINTSAN supports three types of exits from a function:

If the function exits via a ret instruction, a function call is

directly embedded before the return statement.

If the function exits via a jmp instruction, a typical result

of tail-call optimization, the jmp instruction is converted into

a regular function call and return instruction. Then regular

call stack instrumentation can be applied. However, this trans-

formation is only applied if the called function receives no

arguments via the stack. This property is checked via our cus-

tom dead register analysis. If one of the argument registers is

dead directly before the function call, it is not used, meaning

the stack is not used for arguments. However, as this check

has to be performed for the general purpose and the XMM

registers, it only works with the custom dead register anal-

ysis, which—contrary to the STARS analysis implemented

in ZIPR—covers the XMM registers. If BINTSAN cannot

confirm that the function does not have stack arguments, the

call stack instrumentation is omitted for this function.

The last way to exit a function is via stack unwinding. In

this case, BINTSAN creates and inserts a new landing pad

(where appropriate), which performs the necessary call to the

__tsan_func_exit function.

3.7 Atomic Operations

In x86-64 assembly, some instructions can have the lock pre-

fix, which guarantees that these instructions are executed

atomically. We make sure that these instructions are detected

by BINTSAN as atomical. Similarly, BINTSAN detects the

instruction xchg, which is always executed atomically (i. e.,

regardless of whether it has a lock prefix or not).

While it is possible to detect atomic operations in many

cases, compilers also create assembly code from which it

is impossible to deduce the presence of atomic operations.

This is due to the differences in memory model and atomic

operations between high-level languages like C++ and x86-

64. This causes multiple problems for BINTSAN concerning

atomic operations. First, in practice, atomic operations are

generally not involved in actual data races, as multiple atomic

operations on the same variable are usually intended by the

programmer. As a result, these are not reported by TSAN.

This special handling cannot be mimicked by BINTSAN if

atomic operations are not detected, which may lead to false

positives. Atomic operations can also create synchronization

events. For example, spinlocks act like other locks that block

a thread while waiting on a signal from another thread. There-

fore, TSAN considers atomic operations for “happens-before”

relations. However, if BINTSAN fails to detect such an atomic

operation, the synchronization event is missed, which may

again lead to false positives.

Another problem is caused by the reliance of TSAN’s

runtime library on the knowledge of the used memory or-

der by atomic operations. This information is used to create

the correct synchronization events and is available during

compilation. However, BINTSAN, which uses the same run-

time library, cannot always correctly infer the used mem-

ory order based on the binary executable. If inference fails,

atomic instructions are treated as having the acquire, release,

or acquire-release memory orders, depending on the instruc-

tion. The drawback of using the acquire-release model is that

synchronization events not present in the C++ code may be

detected, which may lead to false negatives.

Finally, TSAN requires that all atomic operations are exe-

cuted within the TSAN library itself. The C++ atomic opera-

tion compare exchange requires two memory orders. This

operation compares the value in memory with a given value

and exchanges it for a new value if the two are equal. Since

the exchange only happens in some cases, the TSAN library

has to execute the operation to know the correct memory order

to use. For this reason, the execution of all atomic operations

is performed within the TSAN runtime library itself. There-

fore, BINTSAN replaces the original atomic instruction with

a call to the library function. Special handling ensures that

the correct registers are passed as arguments and that correct

flags are replicated after the function is executed.

3.8 Heuristics

To minimize the impact of undetected atomic instructions,

BINTSAN implements three heuristics to identify occur-

rences of atomic instructions. First, the initialization of a

static variable is thread-safe by default. To implement thread

safety efficiently, compilers like gcc and clang introduce a

guard variable containing the initialization status. The sta-

tus ensures that only the first thread enters the initialization

section. Our first heuristic is used to detect accesses to these

guard variables and mark them as atomic operations with the

memory order acquire.

Memory accesses to the same memory (i. e., same local

variable) within a function are all marked as atomic if ac-

cessed atomically at least once. This heuristic is based on the

expectation that if a developer accesses a variable atomically,

they likely have considered concurrency problems and added

atomic operations to all memory accesses via the variable.

This also holds for the C++ std::atomic variables, as any

access to them is atomic by default. However, this heuristic is



only applied if the instruction without the lock prefix can have

possibly been generated from an atomic operation in C/C++.

Finally, the last heuristic focuses on detecting spinlocks.

These are identified in the binary by searching for natural

loops with at least one read memory access that also fulfill

the following criteria: There must be no writing memory

accesses and function calls (except for usleep) in the loop.

All registers that are used to compute the locations of the

memory accesses must be loop invariant to ensure that the

read memory access reads from the same memory during

every loop iteration. If such a spinlock is found, all reading

memory accesses within the spinlock are treated as atomic

load operations with the memory order acquire.

To create the correct synchronization events, the unlocking

of the spinlock also needs to be detected. This manifests

as simple memory writes in the binary executable, making

detection difficult for general cases. However, typical barrier

implementations insert the unlock memory write in the same

function as the spinlock itself. This allows BINTSAN to

detect the unlock memory write, which accesses the same

memory location, and declare it as atomic with memory order

release.

3.9 Optimizations

To minimize the performance overhead for BINTSAN, we de-

sign and implement several general optimizations in addition

to the previously mentioned technique-specific optimizations.

3.9.1 Skipping Instrumentation

The first optimization is to skip instrumentation for memory

accesses that can be statically determined to be thread-safe.

This is always the case for constant memory. As this mem-

ory will never be written to, it can never cause a data race.

Therefore, BINTSAN skips instrumentation of all accesses to

read-only memory segments.

Similarly, variables only used inside a single thread can-

not cause data races. An example of this is function local

variables, which are never passed to another thread. However,

this is hard to determine in general due to pointer aliasing.

Hence, we only consider cases where a function never leaks

any pointers to stack variables. To detect leakage, we imple-

mented a function local analysis, identifying if pointers to

stack variables are stored in memory or passed as an argu-

ment to another function call. If not, all stack accesses within

the function are considered thread-safe, and instrumentation

can be safely skipped by BINTSAN.

Finally, BINTSAN can also safely omit compiler generated

memory accesses such as implicit memory operands of stack

instructions (e. g., push, pop, enter, leave, call, and ret) and

stack canaries. Canaries are detected as accesses to the thread-

local storage at the constant offset 0x28, which is used by

both gcc and clang.

3.9.2 Custom Dead Register Analysis

As described in Section 3.5, BINTSAN needs to correctly

restore the original register values after each instrumentation

point. To reduce the resulting overhead, the second optimiza-

tion we implement is a custom dead register analysis. A reg-

ister is considered dead within a function once it is no longer

read in any execution path. ZIPR already implements a regis-

ter analysis called STARS. However, this analysis does not

consider any calling convention or ABI, and labels function

calls as reads and writes for all registers. Therefore, we im-

plemented a more aggressive, custom dead register analysis

for the System V ABI [32], which, contrary to the STARS

analysis, also observes SSE registers.

A simplified dead register analysis works by tracking which

registers are dead before and after each instruction and prop-

agating this information within a function. If an instruction

reads a register, it has been alive before the instruction, as its

value is used. If a register is written, it has been dead before

the instruction, as its value is not used. Note that there are

instructions that read and write the same register, typically in

a read-modify-write operation like the add instruction.

The System V ABI specifies that the registers rdi, rsi,

rdx, rcx, r8 and r9 are used to pass function arguments of

the integer class, while r10 may be used for passing a static

chain pointer, which is used by some languages like Ada.

Thus, without further information, all of these registers are

considered to be read by the function call and thus have been

alive before. Therefore, the registers written by a function call

that were dead before the call are more challenging to identify.

While the calling convention suggests that all caller-saved reg-

isters may be overwritten, this is not always true. The problem

is that whole-program optimization of modern compilers may

identify these cases and consider these registers alive. There-

fore, read operations may still happen after the function call if

the compiler detects that the register’s value cannot have been

overwritten during the function call. Therefore, BINTSAN

determines the possibly written registers of a function with

a preliminary depth-first search on the call graph. For each

function, all writing instructions, as well as the called func-

tions, are considered. If the target of a function call cannot

be identified statically, due to virtual function calls or calls to

libraries, all registers are considered to be potentially written.

Jumps to other functions, typically a result of tail-call opti-

mization, are considered and handled as regular function calls.

Indirect jumps are considered to write all registers. As the

return value of a function is, according to the System V ABI,

passed via the rax, rdx or xmm0 register, the ret instruction

is considered to read these registers.

Note that our custom dead register analysis relies on the

System V ABI. If a compiler optimization breaks this ABI,

our analysis may not work with it. In such cases, it can be

disabled.



3.9.3 Custom Compiled Runtime Library

The SSE registers xmm0 to xmm15, which are used for floating

point operations and SSE vector instructions, create a ma-

jor performance problem for binary sanitizers due to their

number and size. In total, 256 bytes are required to save all

registers on the stack. Since the TSAN library itself does not

require these registers, BINTSAN, in its default configura-

tion, uses a specially compiled version of the TSAN runtime

library that limits the use of XMM registers. The compiler op-

tion -mno-sse prohibits the use of the XMM registers, which

allows BINTSAN to skip the saving and restoring of these

registers for all TSAN library functions that are compiled

with this flag. It is not possible to compile the whole run-

time library like this, since library functions like printf(),

which are required for error reporting, require the SSE regis-

ters. Therefore, BINTSAN compiles all performance-critical

TSAN functions without SSE registers and only saves and

restores these registers if actual data races are reported. Note

that for compatibility, BINTSAN can also be used with the

regular runtime library, in which case BINTSAN saves and

restores all SSE registers.

In summary, we envision that BINTSAN can serve

both as a guideline for binary sanitizers and as a low-

overhead, static rewriting-based data race detection tool

with support for atomic operations for binary targets.

4 Evaluation

With our evaluation, we aim to answer the following five

research questions

• RQ1: How well is BINTSAN applicable to COTS bina-

ries? Are rewritten binaries still correct?

• RQ2: Is BINTSAN effective in detecting data races?

What are the tradeoffs in handling atomic operations?

• RQ3: How well does BINTSAN perform? How does it

compare to compiler-based TSAN or dynamic binary

instrumentation tools?

• RQ4: What is the impact of the optimizations used in

our implementation?

• RQ5: Is BINTSAN compatible with other established

tools like TSAN [46] or AFL++ [17]?

4.1 Hardware and Environment

Our evaluation was performed on an Intel Xeon Gold 5320

CPU and 256 GB of RAM with SSD memory as backing

storage running on Ubuntu 22.04.1 LTS. If not stated other-

wise, we use gcc version 11.2.0 for compilation. Similarly,

Table 1: List of all applications that were instrumented and

tested. We list the size in number of instructions, functions,

and memory accesses, the compiler optimization level, the

programming language, and if the application is open source.

Target #Ins Func MemAcc Opt Lang OSS

S
P

E
C

C
P

U
2
0
1
7 505.mcf_r 4,578 44 1,399 O3 C++ ✓

523.cpuxalan_r 1,077,063 16,977 303,881 O3 C++ ✓

525.x264_r 127,358 539 40,023 O3 C ✓

531.deepsjeng_r 18,065 112 4,794 O3 C++ ✓

541.leela_r 45,566 416 11,527 O3 C++ ✓

548.exchange2_r 31,148 15 15,207 O3 Fortran ✓

557.xz_r 33,721 385 8,030 O3 C++ ✓

P
A

R
S

E
C

blackscholes 1,214 5 330 O3 C ✓

bodytrack 107,833 1,330 33,030 O3 C++ ✓

dedup 26,073 129 7,331 O3 C ✓

ferret 127,357 784 38,979 O3 C ✓

fluidanimate 5,752 34 1,624 O3 C++ ✓

freqmine 16,370 77 6,892 O3 C++ ✓

raytrace 990,246 5,217 290,585 O3 C++ ✓

streamcluster 8,195 36 2,185 O3 C++ ✓

swaptions 13,969 46 5,420 O3 C++ ✓

vips 115,6099 6,022 306,129 O3 C++ ✓

R
ea

l-
W

o
rl

d
P

ro
g
ra

m
s

QtNotepad 2,851 35 415 O2 C++ ✓

axel 12,026 105 4,186 O2 C ✓

bifrost 151,442 595 46,237 O3 C++ ✓

bsdtar 136,872 1,347 31,200 O2 C ✓

csv_parser 5,820 34 1,454 O2 C++ ✓

dns-discovery 1,045 19 241 O3 C ✓

ffmpeg 3,765,360 19,195 973,942 O3 C ✓

hdiffz 127,323 914 33,287 O2 C++ ✓

libQt5Core 816,790 10,781 20,0467 O3 C++ ✓

libSwell 147,354 860 38,534 O2 C++ ✓

libbifrost 234,629 1,410 64,182 O2 C++ ✓

lrzip 51,524 375 11,718 O2 C ✓

lz4 60,892 263 14,351 O3 C ✓

pbz2 10,307 97 2,154 O3 C++ ✓

pigz 23,678 124 6,024 O3 C ✓

pixz 6,274 88 2,145 O2 C ✓

plzip 26,532 821 8,371 O0 C++ ✓

rar 115,383 1,123 28,829 N/A C++ ✘

reaper 1,965,335 13,331 488,487 N/A Unknown ✘

sqlite3 397,932 4,089 189,186 O2 C ✓

unrar 51,767 715 11,094 O2 C++ ✓

x265 12,004 110 2,985 O3 C++ ✓

xz 9,474 118 1,454 O2 C ✓

zstd 247,014 991 71,057 O3 C ✓

we use the corresponding version of the source-based thread

sanitizer [46] (TSAN v2) for comparison. We also compare

against Helgrind [11] in version 3.18.1, the only other actively

maintained dynamic data race detection tool for binary tar-

gets to our knowledge. AFL-style coverage instrumentation is

performed within the ZAFL [34] pipeline (commit f03ce79).

4.2 Data Set

We evaluate BINTSAN on 41 applications listed in Table 1.

Further information on their type and version is shown in Ta-

ble 5 in the appendix. This is the dataset that we use through-

out our evaluation unless stated otherwise. The dataset con-

tains the two benchmarks SPEC CPU 2017 and PARSEC,

which consist of real-world applications that have been widely

used in academic work [10, 15, 29, 51, 58] before, and extend

it with further real-world programs.

https://git.zephyr-software.com/opensrc/zafl/-/commit/f03ce79d883751452245d4192b4fdd1b252be271


More specifically, we use the PARSEC benchmark suite

in version 3 [3], consisting of benchmark programs designed

to evaluate multithreaded processors and processor simula-

tions. We remove the subjects canneal, facesim, and x264

from our evaluation, as they terminate with a segfault even

without source or binary instrumentation. In addition, we use

the SPEC CPU 2017 benchmark in version 1.1.0 [7]. Here,

we use seven programs of the SPECrate 2017 Integer Suite

(intrate), which contains integer CPU benchmark programs

based on real-world applications. We omit the targets gcc_r,

perlbench_r, and omnetpp_r, as they are incompatible with

the used binary instrumentation framework ZIPR. In addition

to both benchmarks, we add further real-world applications to

cover a wide spectrum of use cases. We gathered our targets

from the literature [26], and searched GitHub for the phrases

“parallel”, “multithreaded”, and “command line”. We stati-

cally check whether the binaries include multithreading and

also dynamically confirm that it is actually used when we

call the target. We include projects with and without available

source code, as well as binaries with and without graphical

user interfaces (including stand-alone programs as well as

libraries). Furthermore, we also cover complex applications

like ffmpeg (21 MB, 3.7M instructions). We focused mainly

on open-source software to directly compare BINTSAN to

its source-based counterpart TSAN. To model realistic usage

scenarios of real-world binaries, we compile all targets as

suggested by the developers. Notably, this usually includes

higher compiler optimization levels like -O2 and -O3.

4.3 Correctness and Scalability

To evaluate the correctness and scalability (RQ1) of

BINTSAN, we use automated test cases in combination with

manual analysis of our real-world data set. We use the GitHub

project c-testsuite [8] (commit 5c72756) for repeated tests

and regression testing to ensure the correctness of the in-

strumented binaries. The c-testsuite contains 220 small C

programs as well as the expected outputs of the programs.

As these programs are rather small, we extended the auto-

mated test set with the Linux core utilities in version 9.1.

Most of these programs have around 200 to 1,000 lines of C

code. Again, these programs come with test cases that, apart

from two exceptions, successfully work with BINTSAN. The

first exception is a test case that internally uses Valgrind,

which is incompatible with TSAN. The second exception is

a known bug in the TSAN library specific to the coreutils

library function aligned_alloc() [45]. Beyond these arti-

ficial test cases and test suites, we manually test BINTSAN

extensively with our real-world data set during the scope of

our evaluation, which contains a broad spectrum of use cases,

as discussed previously. We do not find any differences in

behavior after instrumentation, apart from performance and

the introduced TSAN behavior.

4.4 Data Race Detection

To evaluate data race detection (RQ2), we use the test cases

of the source-based TSAN from the LLVM project. These

test various features, including unaligned memory data races,

atomic operations in various configurations, and deadlock

detection. We apply these test cases to our BINTSAN pro-

totype implementation to evaluate whether BINTSAN can

correctly identify data races. The test cases are from version

15.0.0 RC1 (commit fd8fd9e) of the LLVM project, which

included 330 individual test configurations. To create a base-

line, we compile the test cases with the TSAN version based

on gcc 11.2.0, of which BINTSAN uses the runtime library.

As the gcc version is older than the implemented LLVM test

cases, some test cases are not correctly detected by the base-

line TSAN; thus, we exclude those from the evaluation. Of

the test cases detected by the baseline, 22 failed when using

BINTSAN. Manual analysis revealed seven different reasons

for this, with the number in brackets specifying the number

of occurrences:

1) Inlined Functions (2x): The source-based TSAN pre-

vents inlining of functions that generate a rep string instruc-

tion, as for example memcpy(). As BINTSAN does not influ-

ence the compilation, BINTSAN cannot prevent this. As a

result, the inlined function does not appear in the generated

stack trace, which causes two test cases to falsely report a

failure even though BINTSAN correctly detects the data race

itself.

2) Atomic Load/Store (5x): BINTSAN uses heuristics to

identify atomic load and store operations. These heuristics

failed for five test cases.

3) Unknown Memory Order (6x): Multiple test cases use

specific memory orders for synchronization. As it is impossi-

ble to infer the used memory order from the binary, BINTSAN

uses its default memory order for all cases and therefore fails

six test cases that expect a different memory order.

4) Annotations (2x): Two test cases used happens-before

annotations that BINTSAN cannot infer from the binary.

5) Computed Program Counter (2x): Two test cases use

functions from the thread sanitizer library that require a pro-

gram counter. Since the test cases perform computations with

the program counter, ZIPR cannot statically translate the ad-

dresses correctly, and the computed program counters are

invalid in the rewritten binary.

6) Variable Suppression (1x): Some tests use TSAN’s er-

ror suppression feature, which allows developers to temporar-

ily suppress known bugs. The functionality is implemented

in the runtime library but depends on the names of all objects

referenced in the suppression being present in the debug in-

formation of the executable. While BINTSAN can provide

https://github.com/c-testsuite/c-testsuite/commit/5c7275656d751de0e68b2d340a95b5681858ed07
https://github.com/llvm/llvm-project/commit/fd8fd9e51cbeb76d290ceda941fd8b7d5a4151bc


this information for function names, variable names are not

included in the generated symbol table, which causes one test

case to fail.

7) VTable Access (4x): The source-based TSAN contains

special handling for vtables to facilitate debugging. Memory

accesses to vtables are represented in the binary as regular mov

instructions and, therefore, indistinguishable from reading

function pointers out of structs. Thus, it is not feasible for

BINTSAN to distinguish memory accesses to vtables, which

is why BINTSAN cannot mimic this behavior.

Additionally, some test cases focus on testing specific

functionalities in the runtime library, that are irrelevant for

BINTSAN. To compensate for this, we add 17 custom test

cases that specifically test BINTSAN functionality (e. g.,

atomic instructions, rep string instructions, tail-call trans-

formation, etc.).

In addition to these artificial test cases, we also evaluate

the data race detection capabilities of BINTSAN on the real-

world applications listed in Table 1. For the real-world pro-

grams with available source code, we compare against the re-

sults of the source-based TSAN. To create inputs for the pro-

grams, we either use fuzzing or manual testing. In both cases,

we run each instrumented version of the program against the

same inputs. For GUI programs, we use a sequence of user

interactions as input. Libraries are indirectly tested as they are

included and used within tested applications. As data races

caused by thread interleaving are usually non-deterministic,

we execute each input three times for every tool in the com-

parison. The reports of all data races of each tool are then

combined, automatically parsed, fingerprinted, and dedupli-

cated. Note that we only consider data races in our evaluation

and neglect all other reports, as TSAN and BINTSAN cover

a slightly different set of issues than Helgrind.

A fingerprint consists of the type of access (read or write)

and the function names of the functions from which the initial

as well as the race producing data access originated. We limit

the stack trace to the first function. This allows us to group

together data races that occur and originate in the same func-

tions but are called in different contexts. The fingerprints are

then used to remove duplicates and establish false positive and

false negative ratings. We consider all data races detected by

BINTSAN but not by TSAN as false positives. Accordingly,

we consider all issues found by TSAN but not by BINTSAN

as false negatives.

We apply this process to all targets in our data set. The

combined results of all runs are summarized in Table 2. Note

that this table only lists targets where either BINTSAN or

TSAN detected data races. During our benchmark evalua-

tion, a total of 958 data races are detected by BINTSAN in

12 targets. 117 of these are identically identified by TSAN.

For most applications, the output of TSAN and BINTSAN

are identical or very similar. However, we find that ffmpeg

is an outlier. It has the largest code base, which leads to the

Table 2: Data Races (#DR) detection results of BINTSAN,

TSAN and Helgrind with the used type of test case genera-

tion.

Type
TSAN BINTSAN Helgrind

Target Type
#DR #DR FP FN #DR FP FN

StdDev

ffmpeg Fuzzing 290 95 830 195 74 2,120 216 13.5

bodytrack Benchmark 6 1 6 5 1 9 5 0.0

QtNotepad Manual 3 3 1 0 3 3 0 0.6

streamcluster Benchmark 4 4 0 0 4 1 0 0.0

axel Manual 4 3 0 1 3 3 0 0.6

vips Benchmark 3 3 0 0 2 2 1 0.6

bifrost Fuzzing 3 2 4 1 2 21 1 0.0

lrzip Fuzzing 2 2 0 0 2 2 0 0.0

rar Fuzzing N/A 1 N/A N/A 0 N/A N/A 0.0

unrar Fuzzing 1 1 0 0 0 0 1 0.0

ferret Benchmark 1 1 0 0 0 2 1 0.0

fluidanimate Benchmark 1 1 0 0 1 1 0 0.0

Sum 318 117 841 202 92 2,164 225

most detected issues. Also, BINTSAN produces by far the

most false positives and false negatives for this program. We

attribute this finding to the following three reasons: First, ffm-

peg shows a high variance between the three different runs in

detected data races for all tools in the comparison, which is an

indicator of high non-determinism due to thread-interleaving.

Furthermore, a manual analysis of the fingerprints and as-

sociated error messages showed that our measuring is often

not able to match the identical issues detected in TSAN and

BINTSAN. This is caused by the function containing the data

race being omitted from the stack trace of BINTSAN, due to

compiler optimizations like inlining or tail-call optimization.

The last reason for the large number of false positives and

false negatives for ffmpeg is likely the heavy use of atomic

operations.

Compared to Helgrind, BINTSAN matches or outperforms

its data race detection in every aspect for all targets that we

tested. We attribute the very high number of false positives

produced by Helgrind to its inability to correctly identify

atomic operations.

4.5 Atomic Operations Heuristics

Apart from inaccurate measurements, the heuristics imple-

mented for atomic operations are the main cause of false

positives and false negatives in BINTSAN. Therefore, we

designed an experiment to count how many atomic operations

are detected by BINTSAN for each target (RQ2). We per-

formed this experiment on all real-world applications listed in

Table 1. Note that the results in Table 3 omit targets without

findings by our heuristics. The table shows how often each

type of atomic operation is detected, either by the lock prefix

and the xchg or by our heuristics. This is compared to the

count of atomic instructions seen in LLVM-IR (Atomic-IR),

when the target is compiled with clang 14.0.0. Note that

this comparison is not exact, due to compiler differences and

optimizations, which can add or remove atomic instructions.

To reduce this inaccuracy, we manually inspect a randomly

selected subset of 20 identified atomic operations for each



Table 3: Atomic operations detected by BINTSAN on real-

world targets. Atomics shows atomics detected via the lock

prefix and xchg instructions. IR-Atomics shows the number

of atomic instructions in LLVM-IR. Targets without findings

by our heuristics are omitted.

Target Atomics Same Mem SV Guard Spinlock Acc Total IR-Atomics

libQt5Core 8,292 5,711 6 0 14,009 21,174

libbifrost 175 89 12 26 302 267

bifrost 163 88 1 26 278 190

ffmpeg 145 38 0 13 196 223

reaper 106 10 0 12 128 N/A

QtNotepad 57 51 0 0 108 112

hdiffz 12 0 0 0 12 20

lrzip 0 4 0 1 5 0

rar 0 4 0 1 5 N/A

bsdtar 2 0 0 0 2 0

sqlite3 1 0 0 0 1 34

x265 0 0 0 1 1 0

zstd 1 0 0 0 1 0

heuristic to verify if the heuristics identified the atomic opera-

tion correctly. As all manually inspected atomic operations

are confirmed to be correct, we expect that most of the atomic

operations are correctly detected. However, our results also

show that the heuristics are prone to some false positives,

as they detect atomic operations for targets without atomic

instructions in LLVM-IR like lrzip and x265.

4.6 Performance

Due to the challenges described in Section 2, one major suc-

cess criterion for binary sanitizers is matching the perfor-

mance of source-based sanitizers. As a guiding principle when

developing BINTSAN, we accepted a lower instrumentation

performance if this tradeoff would result in faster runtime

performance. We evaluate both runtime and instrumentation

performance (RQ3) with the help of two benchmark suites.

Note that the subject freqmine does not support pthread par-

allelization and is thus removed from our runtime tests. For

all runtime evaluations of PARSEC subjects, the provided

simsmall input sets were used.

4.6.1 Instrumentation Performance

We use BINTSAN to instrument the subjects of both bench-

mark suites. To get accurate results, we restrict compilation

and instrumentation to a single process. On average, the instru-

mentation takes around five times as long as the compilation

of the subject. For TSAN, which can be directly compared

with respect to compilation times, an overhead of around 7%

is observed. In general, we found that instrumentation using

BINTSAN scales linearly with the number of assembler in-

structions, which enables instrumentation of large binaries.

During instrumentation, we observe an average binary file

growth of 237%. Note that about two thirds of that growth

can be attributed to BINTSAN, while the rest is caused by

the ZIPR instrumentation process itself. An overview of all

targets can be found in Table 6 in the appendix.

4.6.2 Runtime Performance

To evaluate the runtime performance of BINTSAN, all bench-

mark targets are executed 5 times with 4 threads. The average

of these runs is calculated and referenced as the evaluation re-

sult throughout this section. This measurement is performed

for each subject without any instrumentation, with source-

based TSAN compilation, with binary level instrumentation

using our prototype BINTSAN, and with Helgrind to repre-

sent dynamic instrumentation tools.

Figure 2 shows the performance comparison of TSAN,

BINTSAN, and Helgrind for each subject. The results indicate

that, as expected, TSAN has the lowest average runtime over-

head by a factor of 18.0× compared to the non-instrumented

binary. It is closely followed by BINTSAN, which has an

average slow-down of 20.7× (1.15× overhead compared to

TSAN). The dynamic instrumentation tool Helgrind has a

much higher and less predictable overhead, ranging from

17.1× to 491.1×. It produces an average slow-down of 104.4×

compared to the non-instrumented binary and is thus about

five times slower than BINTSAN. Note that we have excluded

Helgrind’s result for streamcluster, as it timeouts after 1000x

the base execution time.

4.7 Impact of Optimizations

To minimize performance impact, we do not instrument mem-

ory accesses that can statically be proven to be thread-safe,

as discussed in Section 3.9. As BINTSAN supports multiple

types of memory accesses, we examine the respective impact

of this performance optimization separately (RQ4); the re-

sults can be seen in Table 4. On average, 22.6% of all memory

accesses can be safely omitted. By far the most common case

where our optimizations can be applied are accesses to stack

local variables (SLV); 94.8% of the identified omissions can

be accounted to SLVs. However, we expect this ratio to change

for other real-world targets, as most of our targets were com-

piled without stack canaries (SC), which accounts for 5.0%

of omitted memory accesses. Constant memory reads (CMR)

are the least common optimization. To ensure our optimiza-

tion works as expected and does not exclude non-thread-safe

memory accesses, we manually inspected 20 randomly se-

lected accesses for each optimization and found no wrong

categorizations. The performance impact of our custom dead

register analysis can be seen in Figure 3. For comparison,

we also show the performance impact using ZIPR’s STAR

register analysis. Similarly to our runtime evaluation, we exe-

cute the targets five times and present the average values. The

average speed-up of the STAR analysis is 15.7%, while our

custom dead register analysis features a speed-up of 24.5%.

Finally, the total performance overhead of BINTSAN without

the default compiled TSAN runtime library is 25.3x. This is

about 22.0% higher than with the custom compiled runtime



9
.6

1
0
.9

4
6
.4

1
1
.5

2
3
.6

3
6
.8

5
7
.6

7
0
.8

2
3
.3

1
2
.0

1
7
.7

2
7
.9

1
4
.0

1
4
.5

1
8
.3

1
.0 1
7
.2

2
7
.9

1
3
.3

1
4
.8

1
7
.1

2
.3 8
.0 7

0
.0

3
3
.3

2
9
.9 1

1
9
.4

2
0
.4

1
9
.8 1

1
1
.5

1
4
.3

1
5
.8 8

9
.4

1
9
.3

1
9
.1

4
9
1
.1

1
0
.9

9
.2 3
3
.1

3
8
.3

2
1
.3

7
.3

9
.2

1
2
0
.4

2
3
.4

2
9
.9

3
3
3
.8

1
8
.0

2
0
.7 1

0
4
.4

SPEC PARSEC average

505.m
cf_r 

523.xalancbm
k_r

525.x264_r

531.deepsjeng_r 

541.leela_r 

548.exchange2_r 

557.xz_r

blackscholes

bodytrack 

dedup

ferret

fluidanim
ate

raytrace 

stream
cluster

sw
aptions

vips
average

0

100

200

300

400

500

S
lo

w
−

D
o
w

n
 F

a
c
to

r

TSAN BinTSAN Helgrind

Figure 2: Comparison of the performance overhead of different data race detection tools. Values show the factor of the execution

time compared to unmodified subjects. Average shows the geometric mean.

1
0
.9

1
3
.9 2
0
.8 2
6
.1

2
7
.0

2
7
.8

6
8
.6

6
9
.8

7
0
.0

1
7
.7 2
2
.9

2
6
.8

1
4
.5

1
6
.5 2
1
.7

1
7
.2
2
9
.7

4
8
.0

1
4
.8

1
9
.5

2
1
.4

8
.0 8
.6

8
.9

2
9
.9

3
1
.3

3
6
.7

1
9
.8

2
0
.7 2
5
.9

1
5
.8 2
1
.9

2
2
.7

1
9
.1

2
1
.5

2
3
.2

9
.2

9
.4 1
3
.1 2
1
.3

2
1
.3

2
2
.6

9
.2

9
.5 1

7
.0

2
9
.9

2
7
.3 3
3
.3

2
0
.7

2
3
.2

2
7
.5

SPEC PARSEC average

505.m
cf_r 

523.xalancbm
k_r

525.x264_r

531.deepsjeng_r 

541.leela_r 

548.exchange2_r 

557.xz_r

blackscholes

bodytrack 

dedup

ferret

fluidanim
ate

raytrace 

stream
cluster

sw
aptions

vips
average

0

20

40

60

S
lo

w
−

D
o
w

n
 F

a
c
to

r

BinTSAN StarDRA NoDRA

Figure 3: Performance impact of the custom DRA. Average shows the geometric mean.

library. As expected, this optimization performed very evenly

through our data set.

Table 4: Impact of our optimizations detecting thread-safe

memory accesses on real-world targets. MemAcc shows

all memory accesses. We count accesses to stack canaries

(SC), stack local variables (SLV), and constant memory reads

(CMR).

Target MemAcc SC SLV CMR Total Uninstr.

plzip 8,371 388 5,054 1 5,443 (65.02%)

sqlite3 189,186 3,588 90,529 3 94,120 (49.75%)

dns-discovery 241 20 94 0 114 (47.3%)

axel 4,186 108 1,859 1 1,968 (47.01%)

pixz 2,145 121 757 2 880 (41.03%)

libSwell 38,534 0 14,454 0 14,454 (37.51%)

zstd 71,057 1,181 20,503 24 21,708 (30.55%)

lz4 14,351 244 3,653 0 3,897 (27.15%)

ffmpeg 973,942 0 201,312 0 201,312 (20.67%)

hdiffz 33,287 979 5,413 350 6,742 (20.25%)

libQt5Core 200,467 13,157 26,031 131 39,319 (19.61%)

xz 1,454 0 199 0 199 (13.69%)

reaper 488,487 0 65,992 0 65,992 (13.51%)

unrar 11,094 0 1,473 0 1,473 (13.28%)

rar 28,829 0 3,673 0 3,673 (12.74%)

x265 2,985 52 262 64 378 (12.66%)

bsdtar 31,200 1,186 2,436 0 3,622 (11.61%)

pigz 6,024 0 694 0 694 (11.52%)

QtNotepad 415 28 14 0 42 (10.12%)

libbifrost 64,182 1,776 3,618 336 5,730 (8.93%)

lrzip 11,718 0 953 0 953 (8.13%)

csv_parser 1,454 0 99 0 99 (6.81%)

bifrost 46,237 1,072 2,042 12 3,126 (6.76%)

pbz2 2,154 0 143 0 143 (6.64%)

4.8 Compatibility

During our experiments, we implicitly also evaluated the com-

patibility (RQ5) of BINTSAN. More precisely, to show the

compatibility of BINTSAN with source-based TSAN, we in-

strumented libraries like libQt5Core or libSwell with TSAN,

while the program targets using these libraries were instru-

mented with BINTSAN. This worked without issues and

produced similar results to instrumenting everything with

BINTSAN. We also used the compatibility with other estab-

lished fuzzing tools in our evaluation, as we used Zafl’s [34]

coverage instrumentation and fuzzing toolchain to fuzz our

targets in order to create test cases for the data race detection

experiment.

In summary, our evaluation shows that BINTSAN in-

curs only moderate performance overhead compared

to source-based TSAN (15%), while significantly out-

performing comparable binary-oriented tools such as

Helgrind in terms of both performance (5× less over-

head) and data race detection capability, with 32% more

true data races detected.

5 Discussion and Future Work

In the following, we discuss potential limitations of the pro-

totype implementation of BINTSAN, identify threats to our



evaluation’s validity, and outline directions for future work

on this topic.

Limitations of TSAN Since BINTSAN uses the TSAN

runtime library for race condition detection, it inherits the

limitations of TSAN. This includes the lack of support for

Windows and the restriction to user-space applications. How-

ever, an experimental version of TSAN is in development

that aims to support kernel code in the future [27].

Limitations of ZIPR Similarly, as BINTSAN depends on

the rewriting framework ZIPR, its limitations are inherited.

For example, if ZIPR cannot correctly rewrite the binary

executable, the inserted instrumentation by BINTSAN also

fails or produces faulty binaries. This is more likely if the

target program contains obfuscation, DRM mechanisms, self-

modifying code, or handwritten assembly. Further, ZIPR does

not support some legacy compiler features like dynamic ex-

ceptions, which were used by gcc before C++11.

Limitations of BINTSAN There are also limitations of

BINTSAN itself. Some advanced features of the x86-64 archi-

tecture are not supported. This includes transactional memory

instructions, for which BINTSAN will produce false posi-

tives. Similarly, our prototype does not support 512-bit AVX

instructions, as they rarely occur in practice and require high

engineering effort to implement. A limitation of the static in-

strumentation approach taken by BINTSAN is that programs

that generate and execute code, like JIT compilers, will not

work, as the generated code is not instrumented by BINTSAN.

Furthermore, the custom dead register analysis implemented

in BINTSAN assumes that function calls conform to the Sys-

tem V ABI [32], which may not always be correct. However,

this optimization can be disabled. Finally, clang uses a newer

version of TSAN than gcc, with better runtime performance.

However, as our chosen approach requires a dynamic library,

which is not available via clang, we are limited to the gcc

implementation.

Threats to Validity A typical internal threat to validity

is sample selection. We mitigated this threat by relying on

multiple established benchmarks that have previously been

used in research. Furthermore, we included real-world targets

that have been used in studies about data race detection be-

fore. To cover the threat of inappropriately representing the

population in general, we relied on a diverse set of targets,

which includes applications of different sizes, with and with-

out GUIs, libraries, as well as open-source and closed-source

applications from various domains, in which parallel pro-

gramming is popular (compression, multimedia processing,

databases, network applications, and simulations). Another

possible threat to internal validity are potential errors in the

processing required to evaluate the large amounts of data

created by BINTSAN and the comparison tools in our eval-

uation. While we cannot exclude errors in our experimental

infrastructure, we mitigate this threat in two ways. First, we

used manual analysis to confirm our quantitative findings, and

second, we make our experimental infrastructure and scripts

publicly available.

Future Work Our analysis shows that porting source-based

sanitizers to the binary level is likely infeasible for UBSAN

and requires excessive engineering effort for MSAN. Con-

sequently, we do not see a binary version of either sanitizer

as a promising next step. Instead, we expect that static binary

sanitizers that aim to detect similar problems as UBSAN and

MSAN need to break compatibility with their source-based

counterparts and create their own runtime detection mech-

anisms. A similar approach could also further increase the

effectiveness of BINTSAN. We hope to encourage work on

these binary-level-focused sanitizers with our paper.

6 Related Work

Previous work on binary equivalents of source-based san-

itizers focused on ASAN [9, 12, 16, 55]. For example,

RETROWRITE [12] implements ASAN-style instrumenta-

tion, compatible with the compiler-based ASAN, and uses

a custom binary rewriting framework. Contrary to compiler

ASAN, RETROWRITE is not able to differentiate between

individual elements on the stack and cannot instrument global

variables. Due to the limits of RETROWRITE’s lightweight

rewriting approach, it supports only PIC Linux binaries with-

out C++ exception handling. Also, RETROWRITE requires an

existing symbol table or external tools for function identifica-

tion. In total, it achieves an overhead of 50-70% compared to

the compiler-based ASAN.

A different approach is followed by Chen et al. [9], who

leverage hardware features in combination with static binary

rewriting to detect spatial and temporal memory violations in

heap, stack, and global regions. They rely on the upcoming

memory tagging features of ARM to achieve low overheads of

1.82×. However, this new approach breaks compatibility with

ASAN, is limited to AArch64 binaries, and cannot be applied

to other sanitizers. Another approach is to lift the binary to

LLVM-IR and then use compiler-based sanitizers. Altinay

et al. [1] use this to apply ASAN to binaries. However, this

approach suffers from similar limitations as RETROWRITE

and can likely not be generalized to other sanitizers due to

loss of information. As the lifting process does not restore

any kind of multithreading, it is not suitable for TSAN.

Regarding data race detection, the current approaches

can be grouped into two major categories. Static meth-

ods [5, 14, 18, 39] rely on ahead-of-time analysis to identify

data races. These approaches are often resource intensive and

produce many false positives due to approximations. Dynamic

approaches [31, 38, 43, 44, 47, 59] detect data races during

runtime, which limits them to the executed paths and resulting

thread-interleavings. While these methods require exhaustive



tests to be useful in practice, they result in few or even no false

positives. These approaches typically rely on instrumentation.

A further differentiation can be made between approaches

that instrument statically before the execution and approaches

that do the instrumentation dynamically at runtime. The first

group of approaches, such as TSAN [46, 47], require source

code to be available. Dynamic tools like Helgrind [11], a part

of the Valgrind [35] project, usually incur steep performance

overheads. BINTSAN bridges this gap as it combines the ben-

efits of both subcategories. Furthermore, BINTSAN differs

from Helgrind regarding the data race detection functionality:

Helgrind applies a happens-before analysis, while BINTSAN

leverages a combined lockset and happens-before analysis.

Also, Helgrind does not support spinlocks and low-level con-

cepts. Similarly, Helgrind fully lacks the atomic operations

and memory order support that is offered by BINTSAN. Al-

together, this makes Helgrind more prone to false positives

in practice, compared to TSAN’s and BINTSAN’s data race

detection approach.

7 Conclusion

In this work, we have analyzed the challenges of implement-

ing sanitizers on the binary level. Our analysis suggests that a

binary-only implementation of UBSAN is likely infeasible

and that applying the concept behind MSAN to binaries is

very challenging. We have presented the design and imple-

mentation of BINTSAN, a binary-level thread sanitizer. In a

comprehensive evaluation, we have shown how effective and

efficient it is in uncovering data races for binary executables.

Acknowledgement

The authors would like to thank our anonymous shepherd

and reviewers for their valuable feedback. We also thank the

following colleagues and researchers for their help: Franziska

Mäckel, Matti Schulze, Keno Hassler, Florian Schweins and

Avian Krämer. This work was funded by the European

Research Council (ERC) under the consolidator grant RS3

(101045669) and the German Federal Ministry of Educa-

tion and Research (BMBF) under the grants KMU-Fuzz

(16KIS1898) and CPSec (16KIS1899).

References

[1] Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Ra-

jasekaran, Dixin Zhou, Adrian Dabrowski, David Gens,

Yeoul Na, Stijn Volckaert, Cristiano Giuffrida, et al. Bin-

Rec: Dynamic Binary Lifting and Recompilation. In

European Conference on Computer Systems (EuroSys),

2020.

[2] Erick Bauman, Zhiqiang Lin, Kevin W Hamlen, et al.

Superset Disassembly: Statically Rewriting x86 Binaries

Without Heuristics. In Symposium on Network and

Distributed System Security (NDSS), 2018.

[3] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,

and Kai Li. The PARSEC Benchmark Suite: Characteri-

zation and Architectural Implications. In International

Conference on Parallel Architectures and Compilation

Techniques, 2008.

[4] Marcel Böhme, Cristian Cadar, and Abhik Roychoud-

hury. Fuzzing: Challenges and Reflections. IEEE Softw.,

38(3):79–86, 2021.

[5] Chandrasekhar Boyapati, Robert Lee, and Martin Ri-

nard. Ownership Types for Safe Programming: Pre-

venting Data Races and Deadlocks. In ACM SIGPLAN

Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA), 2002.

[6] Derek Bruening and Qin Zhao. Practical memory check-

ing with dr. memory. In IEEE/ACM International Sym-

posium on Code Generation and Optimization (CGO),

pages 213–223. IEEE, 2011.

[7] James Bucek, Klaus-Dieter Lange, and Jóakim

v. Kistowski. SPEC CPU2017: Next-generation

Compute Benchmark. In ACM/SPEC International

Conference on Performance Engineering, 2018.

[8] Andrew Chambers. C-testsuite. Repository, 2018. URL

https://github.com/c-testsuite/c-testsuite.

[9] Xingman Chen, Yinghao Shi, Zheyu Jiang, Yuan Li,

Ruoyu Wang, Haixin Duan, Haoyu Wang, and Chao

Zhang. MTSan: A Feasible and Practical Memory Sani-

tizer for Fuzzing COTS Binaries. In USENIX Security

Symposium, 2023.

[10] Christina Delimitrou and Christos Kozyrakis. Quasar:

Resource-efficient and QoS-aware Cluster Management.

ACM SIGPLAN Notices, 49(4):127–144, 2014.

[11] Valgrind Developers. Helgrind: A Thread Error De-

tector. https://valgrind.org/docs/manual/hg-

manual.html, 2007.

[12] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Math-

ias Payer. Retrowrite: Statically Instrumenting COTS

Binaries for Fuzzing and Sanitization. In IEEE Sympo-

sium on Security and Privacy (S&P), 2020.

[13] Gregory J Duck, Xiang Gao, and Abhik Roychoudhury.

Binary Rewriting without Control Flow Recovery. In

ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), 2020.

[14] Dawson Engler and Ken Ashcraft. RacerX: Effective,

Static Detection of Race Conditions and Deadlocks.

https://github.com/c-testsuite/c-testsuite
https://valgrind.org/docs/manual/hg-manual.html
https://valgrind.org/docs/manual/hg-manual.html


ACM SIGOPS Operating Systems Review, 37(5):237–

252, 2003.

[15] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant,

Karthikeyan Sankaralingam, and Doug Burger. Dark Sil-

icon and the End of Multicore Scaling. In International

Symposium on Computer Architecture, 2011.

[16] Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo

Querzoni. Fuzzing Binaries for Memory Safety Errors

with QASan. In IEEE Secure Development (SecDev),

2020.

[17] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and

Marc Heuse. AFL++ Combining Incremental Steps of

Fuzzing Research. In USENIX Workshop on Offensive

Technologies (WOOT), 2020.

[18] Cormac Flanagan and Stephen N Freund. Type-based

Race Detection for Java. In ACM SIGPLAN Conference

on Programming Language Design and Implementation

(PLDI), 2000.

[19] Xiang Gao, Gregory J. Duck, and Abhik Roychoudhury.

Scalable Fuzzing of Program Binaries with E9AFL. In

ACM/IEEE International Conference on Automated Soft-

ware Engineering (ASE), 2021.

[20] Google. Sanitizers. Repository and Documentation.

Google, 2011. URL https://github.com/google/

sanitizers.

[21] William H Hawkins, Jason D Hiser, Michele Co, Anh

Nguyen-Tuong, and Jack W Davidson. Zipr: Efficient

Static Binary Rewriting for Security. In Conference on

Dependable Systems and Networks (DSN), 2017.

[22] Marc Heuse. Binary-only Fuzzing with Dynamorio and

Afl, 2018. URL https://github.com/vanhauser-

thc/afl-dynamorio.

[23] Marc Heuse. Afl with pintool, 2018. URL https://

github.com/vanhauser-thc/afl-pin.

[24] Jason Hiser, Anh Nguyen-Tuong, William Hawkins,

Matthew McGill, Michele Co, and Jack Davidson.

Zipr++ Exceptional Binary Rewriting. In Workshop

on Forming an Ecosystem Around Software Transforma-

tion, 2017.

[25] Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and Her-

bert Bos. TIFF: Using Input Type Inference to Improve

Fuzzing. In Annual Computer Security Applications

Conference (ACSAC), 2018.

[26] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu.

Context-sensitive and directional concurrency fuzzing

for data-race detection. In Symposium on Network and

Distributed System Security (NDSS), 2022.

[27] Andrey Konovalov. Kernel Thread Sanitizer (KT-

SAN). https://github.com/google/kernel-

sanitizers/blob/master/KTSAN.md, 2021.

[28] Leslie Lamport. Time, Clocks, and the Ordering of

Events in a Distributed System. Communications of the

ACM (CACM), 21:558–565, 1978.

[29] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai,

Ofir Weisse, Satish Narayanasamy, and Baris Kasikci.

DOLMA: Securing Speculation with the Principle of

Transient Non-Observability. In USENIX Security Sym-

posium, 2021.

[30] William Mahoney and J Todd McDonald. Enumerating

x86-64 - It’s not as easy as counting. Technical report,

University of Nebraska Omaha, 2021.

[31] Daniel Marino, Madanlal Musuvathi, and Satish

Narayanasamy. LiteRace: Effective Sampling for

Lightweight Data-race Detection. In ACM SIGPLAN

Conference on Programming Language Design and

Implementation (PLDI), 2009.

[32] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark

Mitchell. System V Application Binary Interface.

AMD64 Architecture Processor Supplement, Draft v0,

99(2013):57, 2013.

[33] Stefan Nagy, Anh Nguyen-Tuong, Jason D Hiser, Jack W

Davidson, and Matthew Hicks. Same Coverage, Less

Bloat: Accelerating Binary-only Fuzzing with Coverage-

preserving Coverage-guided Tracing. In ACM Confer-

ence on Computer and Communications Security (CCS),

2021.

[34] Stefan Nagy, Anh Nguyen-Tuong, Jason D Hiser, Jack W

Davidson, and Matthew Hicks. Breaking through Bina-

ries: Compiler-quality Instrumentation for better Binary-

only Fuzzing. In USENIX Security Symposium, 2021.

[35] Nicholas Nethercote and Julian Seward. Valgrind: A

Framework for Heavyweight Dynamic Binary Instru-

mentation. ACM SIGPLAN Notices, 42(6):89–100,

2007.

[36] Manh-Dung Nguyen, Sébastien Bardin, Richard Boni-

chon, Roland Groz, and Matthieu Lemerre. Binary-level

Directed Fuzzing for Use-After-Free Vulnerabilities. In

Symposium on Recent Advances in Intrusion Detection

(RAID), 2020.

[37] Scott Owens, Susmit Sarkar, and Peter Sewell. A better

x86 Memory Model: x86-TSO (extended version).

Technical Report UCAM-CL-TR-745, University

of Cambridge, Computer Laboratory, 2009. URL

https://www.cl.cam.ac.uk/techreports/UCAM-CL-

TR-745.pdf.

https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/vanhauser-thc/afl-dynamorio
https://github.com/vanhauser-thc/afl-dynamorio
https://github.com/vanhauser-thc/afl-pin
https://github.com/vanhauser-thc/afl-pin
https://github.com/google/kernel-sanitizers/blob/master/KTSAN.md
https://github.com/google/kernel-sanitizers/blob/master/KTSAN.md
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-745.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-745.pdf


[38] Eli Pozniansky and Assaf Schuster. MultiRace: Efficient

on-the-fly Data Race Detection in Multithreaded C++

Programs. Concurrency and Computation: Practice and

Experience, 19(3):327–340, 2007.

[39] Polyvios Pratikakis, Jeffrey S Foster, and Michael Hicks.

Locksmith: Context-sensitive Correlation Analysis for

Race Detection. ACM SIGPLAN Notices, 41(6):320–

331, 2006.

[40] The GNU Project. Memory model synchronization

modes. GCC Documentation., 2012. URL https:

//gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync.

[41] The LLVM Project. UndefinedBehaviorSanitizer Doc-

umentation., 2023. URL https://clang.llvm.org/

docs/UndefinedBehaviorSanitizer.html.

[42] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-

jocar, Cristiano Giuffrida, and Herbert Bos. VUzzer:

Application-aware Evolutionary Fuzzing. In Symposium

on Network and Distributed System Security (NDSS),

2017.

[43] Paul Sack, Brian E Bliss, Zhiqiang Ma, Paul Petersen,

and Josep Torrellas. Accurate and Efficient Filtering

for the Intel Thread Checker Race Detector. In Work-

shop on Architectural and System Support for Improving

Software Dependability, 2006.

[44] Stefan Savage, Michael Burrows, Greg Nelson, Patrick

Sobalvarro, and Thomas Anderson. Eraser: A Dynamic

Data Race Detector for Multithreaded Programs. ACM

Transactions on Computer Systems (TOCS), 15(4):391–

411, 1997.

[45] John Scott. Obsolete Check in aligned_alloc(). https:

//github.com/google/sanitizers/issues/1495,

2022.

[46] Konstantin Serebryany and Timur Iskhodzhanov.

ThreadSanitizer: Data Race Detection in Practice. In

Workshop on Binary Instrumentation and Applications,

2009.

[47] Konstantin Serebryany, Alexander Potapenko, Timur

Iskhodzhanov, and Dmitriy Vyukov. Dynamic Race

Detection with LLVM Compiler. In International Con-

ference on Runtime Verification, 2011.

[48] Konstantin Serebryany, Derek Bruening, Alexander

Potapenko, and Dmitry Vyukov. AddressSanitizer: A

Fast Address Sanity Checker. In USENIX Annual Tech-

nical Conference (ATC), 2012.

[49] Kostya Serebryany. Sanitize, Fuzz, and Harden your

C++ Code. In USENIX Enigma, 2016.

[50] Julian Seward and Nicholas Nethercote. Using valgrind

to detect undefined value errors with bit-precision. In

USENIX Annual Technical Conference (ATC), 2005.

[51] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying

Zhang. LegoOS: A Disseminated, Distributed OS for

Hardware Resource Disaggregation. In Symposium on

Operating Systems Design and Implementation (OSDI),

2018.

[52] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,

Yeoul Na, Stijn Volckaert, Per Larsen, and Michael

Franz. SoK: Sanitizing for Security. In IEEE Sym-

posium on Security and Privacy (S&P), 2019.

[53] Evgeniy Stepanov and Konstantin Serebryany. Memo-

rySanitizer: Fast Detector of Uninitialized Memory Use

in C++. In IEEE/ACM International Symposium on

Code Generation and Optimization (CGO), 2015.

[54] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Ar-

avind Machiry, John Grosen, Paul Grosen, Christopher

Kruegel, and Giovanni Vigna. Ramblr: Making Re-

assembly Great Again. In Symposium on Network and

Distributed System Security (NDSS), 2017.

[55] Yuchao Wang and Baojiang Cui. The Study and Realiza-

tion of a Binary-Based Address Sanitizer Based on Code

Injection. In International Conference on Innovative

Mobile and Internet Services in Ubiquitous Computing,

2020.

[56] David Williams-King, Hidenori Kobayashi, Kent

Williams-King, Graham Patterson, Frank Spano,

Yu Jian Wu, Junfeng Yang, and Vasileios P Kemerlis.

Egalito: Layout-agnostic Binary Recompilation. In

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2020.

[57] Wei You, Xuwei Liu, Shiqing Ma, David Perry, Xiangyu

Zhang, and Bin Liang. SLF: Fuzzing Without Valid

Seed Inputs. In International Conference on Software

Engineering (ICSE), 2019.

[58] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morri-

son, Josep Torrellas, and Christopher W Fletcher. Specu-

lative Taint Tracking (STT) a Comprehensive Protection

for Speculatively Accessed Data. In IEEE/ACM Inter-

national Symposium on Microarchitecture, 2019.

[59] Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack:

Efficient Detection of Data Race Conditions via Adap-

tive Tracking. In Symposium on Operating Systems

Principles (SOSP), 2005.

[60] Google Project Zero. WinAFL, 2016. URL https:

//github.com/googleprojectzero/winafl.

https://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync
https://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/google/sanitizers/issues/1495
https://github.com/google/sanitizers/issues/1495
https://github.com/googleprojectzero/winafl
https://github.com/googleprojectzero/winafl


Table 5: Type of all applications in the evaluation data set. For

benchmark programs, the version/commmit of the benchmark

is stated.

Target Type Version

S
P

E
C

C
P

U
2
0
1
7 505.mcf_r Route Planning

1.1.0

523.cpuxalan_r XML Conversion

525.x264_r Video

531.deepsjeng_r Tree Search

541.leela_r Tree Search

548.exchange2_r Sudoku

557.xz_r Compression

P
A

R
S

E
C

blackscholes Simulation

3.0

bodytrack Body Tracking

dedup Compression

ferret Similarity Search

fluidanimate Simulation

freqmine Data Mining

raytrace Simulation

streamcluster Data Mining

swaptions Simulation

vips Image

R
ea

l-
W

o
rl

d
P

ro
g
ra

m
s

QtNotepad Text Editor 1

axel Download Account 2.17.11

bifrost Graph Software v1.3.1

bsdtar Compression 60f086b

csv_parser Data Parser de17df6

dns-discovery Network 60f086b

ffmpeg Multimedia N-110171-g2244722f1f

hdiffz File Comparison 60f086b

libQt5Core GUI Lib 5.15.2

libSwell Emulation Lib 1

libbifrost Graph Software v1.3.1

lrzip Compression 0.651

lz4 Compression a3042b9

pbz2 Compression 1.1.13

pigz Compression 2.7

pixz Compression 294875b

plzip Compression 1.9

rar Compression 6.22 beta 1

reaper Audio 6.8

sqlite3 Database 3.42.0

unrar Compression 6.22 beta 1

x265 Video 3.4.1

xz Compression 5.4.3

zstd Compression 06b5b37

A Appendix

Table 5 lists the type and version for all applications we have

evaluated, showing the broad range of our tested programs.

For benchmark programs, we include the version number of

the benchmark.

Table 6 shows the file size growth for all applications we

have evaluated. Furthermore, the proportion of size growth

that can be attributed to BINTSAN is given. The rest of the

growth is caused by the rewriting process of ZIPR.

Table 7 contains a list of sanitization features included in

UBSAN as defined in the clang documentation [41]. The

table also contains a short explanation of why certain features

Table 6: Size comparison of binaries in the evaluation data

set. The original file size, the instrumented file size, the to-

tal binary growth and the share of growth (SOG) caused by

BINTSAN is given.

Target Size Instr. Size Growth SOG

S
P

E
C

C
P

U
2
0
1
7 505.mcf_r 34.94 KB 112.47 KB 221.93% 60.07%

523.cpuxalan_r 7.25 MB 29.27 MB 303.81% 58.56%

525.x264_r 674.98 KB 2.43 MB 259.52% 80.04%

531.deepsjeng_r 104.61 KB 339.03 KB 224.09% 67.06%

541.leela_r 267.31 KB 868.98 KB 225.08% 63.92%

548.exchange2_r 174.3 KB 708.57 KB 306.51% 86.85%

557.xz_r 215.34 KB 531.93 KB 147.02% 56.61%

P
A

R
S

E
C

blackscholes 18.81 KB 54.89 KB 191.85% 60.07%

bodytrack 588.92 KB 1.73 MB 194.42% 58.97%

dedup 158.42 KB 484.77 KB 206.01% 73.66%

ferret 644.47 KB 2.13 MB 230.33% 74.1%

fluidanimate 47.81 KB 152.17 KB 218.29% 67.95%

freqmine 88.6 KB 365.0 KB 311.96% 77.4%

raytrace 5.53 MB 18.76 MB 239.04% 72.09%

streamcluster 51.82 KB 147.25 KB 184.18% 65.96%

swaptions 80.3 KB 171.38 KB 113.43% 73.12%

vips 6.3 MB 20.7 MB 228.38% 67.4%

R
ea

l-
W

o
rl

d
P

ro
g
ra

m
s

axel 80.66 KB 166.6 KB 106.54% 70.29%

bifrost 937.17 KB 3.54 MB 277.52% 73.51%

bsdtar 792.8 KB 2.09 MB 163.2% 61.54%

csv_parser 43.81 KB 181.94 KB 315.3% 73.04%

dns-discovery 18.57 KB 45.61 KB 145.63% 64.26%

ffmpeg 20.76 MB 59.82 MB 188.1% 57.31%

hdiffz 679.28 KB 2.55 MB 274.67% 73.91%

libQt5Core.so 5.52 MB 17.59 MB 218.64% 73.52%

libSwell.so 753.13 KB 3.0 MB 298.28% 75.9%

libbifrost.so 1.43 MB 5.29 MB 270.05% 74.11%

lrzip 283.03 KB 1.12 MB 295.06% 74.19%

lz4 321.77 KB 668.57 KB 107.78% 70.87%

pbz2 80.76 KB 274.72 KB 240.17% 69.61%

pigz 146.24 KB 488.12 KB 233.78% 60.88%

pixz 55.45 KB 126.62 KB 128.37% 41.5%

plzip 167.08 KB 543.25 KB 225.14% 80.92%

rar 541.49 KB 2.47 MB 356.15% 75.03%

reaper 10.58 MB 45.14 MB 326.46% 72.17%

sqlite3 1.98 MB 4.7 MB 137.39% 86.81%

unrar 319.28 KB 1.29 MB 305.25% 65.23%

x265 162.01 KB 268.13 KB 65.5% 51.72%

xz 81.18 KB 203.19 KB 150.31% 37.83%

zstd 1.19 MB 3.32 MB 179.82% 76.25%

are impossible at the binary level. Note that partially possible

features are still marked as possible and that this assessment

assumes the use of a heuristic to distinguish between signed

and unsigned types. Other type inference heuristics have to be

very precise for the sanitization checks to work as expected,

and they appeared in our preliminary experiments as not suf-

ficient. However, this might change in the future with new

advancements in type inference research.



Table 7: Overview of UBSAN sanitization features [41], with a short assessment of whether these are portable to the binary

level or not.

Sanitization Description Binary Explanation

alignment Use of a misaligned pointer or creation of a misaligned reference. Also

sanitizes assume_aligned-like attributes.

✘ Type information is not accurate enough.

bool Load of a bool value that is neither true nor false. ✘ Type information is not accurate enough.

builtin Passing invalid values to compiler builtins. ✘ Information on compiler builtins is not available.

bounds Out of bounds array indexing, in cases where the array bound can be

statically determined.

✘ Static bound information is not available.

enum Load of a value of an enumerated type that is not in the range of repre-

sentable values for the enumerated type.

✘ Information on what values are representable is not available.

float-cast-overflow Conversion to, from, or between floating-point types that would overflow

the destination. Because the range of representable values for all floating-

point types supported by Clang is [-inf, +inf], the only cases detected are

conversions from floating point to integer types.

✓

float-divide-by-zero Floating point division by zero. ✓

function Indirect call of a function through a function pointer of the wrong type. ✘ Function type information is not accurate enough.

implicit-(un)signed-

integer-truncation

Implicit conversion from integer of larger bit width to smaller bit width, if

that results in data loss. That is, if the demoted value, after casting back to

the original width, is not equal to the original value before the downcast.

✓

implicit-integer-sign-

change

Implicit conversion between integer types, if that changes the sign of the

value. That is, if the original value was negative and the new value is

positive (or zero), or the original value was positive and the new value is

negative. Issues caught by this sanitizer are not undefined behavior but

are often unintentional.

✓

integer-divide-by-zero Integer division by zero. ✓

nonnull-attribute Passing null pointer as a function parameter that is declared to never be

null.

✘ Non-null type information is not accurate enough.

null Use of a null pointer or creation of a null reference. ✘ Pointer type information is not accurate enough.

nullability-arg Passing null as a function parameter that is annotated with _Nonnull. ✘ Non-null type information is not accurate enough.

nullability-assign Assigning null to an lvalue that is annotated with _Nonnull. ✘ Non-null type information is not accurate enough.

nullability-return Returning null from a function with a return type annotated with _Nonnull. ✘ Non-null type information is not accurate enough.

objc-cast Invalid implicit cast of an ObjC object pointer to an incompatible type.

This is often unintentional, but it is not undefined behavior; therefore, the

check is not a part of the undefined group.

✘ Type information is not accurate enough.

object-size An attempt to potentially use bytes for which the optimizer can determine

that they are not part of the object being accessed.

✘ Struct type information is not accurate enough.

pointer-overflow Performing pointer arithmetic that overflows or where either the old or

new pointer value is a null pointer.

✓

return In C++, reaching the end of a value-returning function without returning

a value.

✘ Function type information is not accurate enough.

return-nonnull-attribute Returning null pointer from a function that is declared to never return

null.

✘ Non-null type information is not accurate enough.

shift Shift operators where the amount shifted is greater or equal to the pro-

moted bit-width of the left-hand side or less than zero, or where the

left-hand side is negative. For a signed left shift, also checks for signed

overflow in C and for unsigned overflow in C++.

✓

unsigned-shift-base Check that an unsigned left-hand side of a left shift operation doesn’t

overflow.

✓

signed-integer-overflow Signed integer overflow, where the result of a signed integer computation

cannot be represented in its type.

✓

unreachable If control flow reaches an unreachable program point. ✘ Compiler based reachability analysis is not available.

unsigned-integer-

overflow

Unsigned integer overflow, where the result of an unsigned integer com-

putation cannot be represented in its type.

✓

vla-bound A variable-length array whose bound does not evaluate to a positive value. ✘ Array bound information is not available.

vptr Use of an object whose vptr indicates that it is of the wrong dynamic type

or that its lifetime has not begun or has ended.

✘ Type information is not accurate enough.


	Introduction
	Challenges for Binary Sanitizers
	Assessment of Technical Barriers
	Success Criteria
	Assessment of Source-Based Sanitizers

	binTSAN: Binary Thread Sanitizer
	High-level Overview
	Binary Rewriting Framework
	Data Race Detection
	Instrumentation
	State Saving
	Call Stack Instrumentation
	Atomic Operations
	Heuristics
	Optimizations
	Skipping Instrumentation
	Custom Dead Register Analysis
	Custom Compiled Runtime Library


	Evaluation
	Hardware and Environment
	Data Set
	Correctness and Scalability
	Data Race Detection
	Atomic Operations Heuristics
	Performance
	Instrumentation Performance
	Runtime Performance

	Impact of Optimizations
	Compatibility

	Discussion and Future Work
	Related Work
	Conclusion
	Appendix

