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Abstract—Over the past decade, the proliferation of Low Earth
Orbit satellites, driven by lower launch costs, has revolution-
ized space applications, from communication to earth obser-
vation and weather forecasting. This trend also introduced
a shift in hardware: Specialized radiation-resistant hardware
was displaced by cheaper commercial off-the-shelf components.
As a critical part of modern infrastructure, satellites attract
cyber attacks and are subject to terrestrial and space-specific
threats, necessitating effective security measures. However,
cryptographic protections and exploit mitigations remain lim-
ited in productive satellite firmware. Academic research on
satellite security only focuses on cryptographic protections,
which raises the question if exploit mitigation strategies are
suitable for satellites or impacted by space-specific factors,
such as cosmic radiation.

In this paper, we present the first systematic analysis of 381
small satellite designs, identifying the prevalence of commercial
off-the-shelf hardware platforms in space projects and the
availability of ready-to-use exploit mitigation strategies for
satellite platforms. Since mitigations are seemingly available,
we explore the effects of cosmic radiation on software-based
exploit mitigations by implementing RADSIM, an automated
tool for simulating single event errors (bitflips). Our study
simulated over 21 billion faults in differently hardened satellite
firmware binaries to assess the fault tolerance of exploit mitiga-
tion strategies in the presence of cosmic radiation. Our results
reveal that some mitigations barely impact the fault tolerance,
while others increase the error probability of hardened satellite
firmware by up to 19%. These findings provide novel insights
into the trade-offs between exploit mitigation effectiveness and
radiation resilience, offering guidance to satellite developers
on optimizing security in space-based systems.

1. Introduction

Over the past decade, satellites have become a vital part
of our modern digital society. They provide critical services
ranging from global navigation systems, communication,
and weather forecasting to earth observations. In recent

years, commercial and government agencies started pursuing
space-borne solar energy and in-orbit manufacturing as part
of the space age revolution. These novel developments have
been made possible at such rapid speed due to cheaper
access to space and reduced costs for satellite development
using commercial off-the-shelf (COTS) components. These
developments are commonly referred to as the New Space
Era [37], which is often associated with smaller, cheaper,
and, notably, far more numerous Low Earth Orbit satel-
lites. By 2010, a total of 81 small satellites, i.e., satellites
weighing less than 10kg, had been launched. Since then, this
number has increased to 2,136 in 2023, and it is expected
to increase by 450 by 2025 [38], which does not include
Starlink satellites.

While this opens new economic and academic oppor-
tunities, it also makes space targets increasingly attrac-
tive to cyber attacks. Fundamentally, every satellite con-
sists of radio communications equipment to be remote-
controlled from a terrestrial Ground Station (GS) and an On-
Board Computer (OBC) that manages incoming Telecom-
mands (TCs) and responds with Telemetry (TM). Hence,
satellites are remote-controlled, space-borne, and connected
embedded systems. In rare but increasingly common cases,
they may even be described as cyber-physical devices due
to the increasing popularity and affordability of thruster
technologies that enable satellites to control their orbit (at
least to a certain degree). This, in turn, allows them to
interact with their environment or to crash into other space
assets if hijacked by malicious actors.

These factors lead to clear motives, especially for state-
controlled actors. Indeed, in recent years, we have seen
space assets and space-supported infrastructure become cru-
cial during geopolitical conflicts. For example, providers like
Starlink and ViaSat that facilitate remote communication
have come under attack by Russia during its invasion of
Ukraine [46], [72]. In total, recent research counted 124
cyber attack operations carried out in the context of this
conflict alone [56]. This trend points towards a far more
hostile space security environment in the coming years.

Given their exposed nature and crucial role within crit-
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ical infrastructure, we would expect well-tested and secure
systems that have undergone extensive research. Yet, we find
a different picture in practice: While research on the security
of space-supported terrestrial equipment, such as very small
aperture terminal (VSAT) systems, has gained traction in
recent years [54], [55], [74], research on the security of
the actual satellites themselves is more elusive. In 2023,
Willbold et al. were the first to publish a security analysis
of satellites [76], demonstrating a severe lack of security
measures. More specifically, their analysis shows (1) a lack
of cryptographic protections to secure the initial access to
satellites, and (2) a complete absence of exploit mitigation
techniques to perpetuate defense in depth. In many cases,
the satellite operators rely on security by obscurity rather
than technical means.

Looking at existing academic research for cryptography
in space applications, we find various papers proposing new
space-oriented solutions [9], [13], [27], [36]. In contrast, we
have not found equivalent papers regarding exploit mitiga-
tion techniques for space systems. This raises the question of
whether technical challenges simply do not exist or whether
they have not been studied so far.

When analyzing the difference between terrestrial and
space-borne (embedded) systems, the most striking distinc-
tion is their environment. Space systems must deal with
significant and frequent temperature differences, low gravity,
extreme remoteness, and cosmic radiation. Thus, if there
are technical challenges, they either reside in (one of) these
factors or are a consequence thereof, such as unconventional
computing hardware or isolated software ecosystems.

In the first part of this paper, we manually study 381
small satellite designs via open-source intelligence and at-
tempt to identify the underlying hardware platforms used.
We intend to see if there is a stark discrepancy between
the computing hardware deployed in space and the one
commonly considered in security research or in mainstream
compilers that offer contemporary exploit mitigations such
as stack cookies [22] or Control Flow Integrity (CFI) [1].
Our analysis reveals that the most common hardware plat-
form is ARM Cortex-M (44.2%), and only 8.5% of designs
use a radiation-hardened chip. Since ARM Cortex-M is a
predominant platform for terrestrial applications [69], this
rules out major technical challenges stemming from a par-
ticular hardware platform used, such that we analyze the
problem from an operational perspective. With many hostile
factors in space threatening modern electronics, the biggest
impact is highly likely stemming from cosmic radiation.
Cosmic radiation can induce single event errors known
as bitflips, where a binary bit in the system’s memory
or processor unexpectedly changes from 0 to 1 or vice
versa. This effect is caused by high-energy particles striking
the charges representing the state in either memory or the
processing unit. While cosmic radiation poses a challenge
to electronic systems on Earth, the impact is significantly
higher in space due to the lack of atmospheric shielding. In
terrestrial systems, bitflips are relatively rare, but even here
on Earth, they are so common in data centers that error
correction code (ECC) memory is employed. Dependable

systems research has long explored the consequences of bit-
flips on general software reliability [35], [47], [77], but their
impact on exploit mitigation features remains unknown.

Based on the nature of many software-based exploit
mitigations, we speculate they may increase the risk of
errors when deployed in radiation-heavy environments. For
example, stack canaries that enforce a specific canary value
being matched, or CFI, where tags or whitelisted addresses
are compared, provide ample surface where a single bitflip
can disrupt the program execution. Yet, the impact of single
event errors on exploit mitigations remains elusive: At some
point, the risk of a malicious actor attacking a satellite will
outweigh the risk of losing access to the satellite due to
a bitflip in some exploit mitigation. The balance is further
shifted by the increased numbers of satellites, increasing
control capabilities paired with ever-increasing reliance on
them, as well as continuous simplification of how to com-
municate with them. To allow satellite developers to make
a more informed choice requires a precise measurement of
the impact of radiation on different, widely available exploit
mitigation techniques.

To this end, we systematically study available, pro-
duction-ready, software-based exploitation mitigation tech-
niques. We design and implement RADSIM, a tool capable
of simulating single event errors by introducing bitflips
into code and data. The first fully binary-agnostic and de-
terministic fault-injection approach requires no pre-defined
static injection points or probabilities. In an extensive testing
campaign, we exhaustively simulate all potential bitflips that
may occur during the execution of two real-world satellites.
In numbers, we perform 21 billion fault injection experi-
ments, more than four orders of magnitude more than in
any prior attempt [15], [58]. Based on this vast empirical
evidence, we derive the impact of radiation on exploit
mitigations. We find that stack canaries increase the failure
probability of our two satellite targets by 14% and 19%,
while CFI increases it by 2.1% and 0.5%, respectively.
Contributions. In summary, we make the following key
contributions in this paper:

• We conduct the first systematic hardware analy-
sis of small Low Earth Orbit satellites through an
extensive open-source intelligence survey, showing
that radiation-hardened processors are rarely used in
practice.

• Identifying radiation as a core threat to reliability, we
propose RADSIM, the first fully binary-agnostic and
deterministic fault injection approach, enabling us to
evaluate the susceptibility of direly needed exploit
hardening techniques to radiation.

• Performing 21 billion fault injection experiments, we
are the first to study the impact of software-based
exploit mitigations on fault tolerance and show that
some techniques have barely any negative impact,
while others increase failure probability by up to
19%.

We release the source code of RADSIM at https://github.
com/CISPA-SysSec/space-radsim.
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2. Survey of Applicable Mitigations

Low-level languages such as C/C++ require the pro-
grammer to manage the application’s memory manually.
As human errors are inevitable, errors in such parts of
programs occur and lead to memory corruption bugs that
enable attacks to overwrite data or hijack the program’s
control flow. Over the years, various mitigations have been
proposed to hinder attackers from exploiting such vulnera-
bilities. Famous mitigations that found widespread adoption
include stack canaries [22], shadow stacks [18], and Control
Flow Integrity (CFI) [1], [17].

While these features are crucial to enforcing the security
of systems, their real-world adoption usually relies on com-
pilers supporting them. In the case of the aforementioned
mitigations, modern compilers such as GCC and Clang have
adopted them and allow users to enable them via compile-
time flags. It is essential to consider that these features
often rely on specific hardware and platform support; for
example, GCC only supports shadow stack on x86 plat-
forms due to the reliance on the Control Flow Enforcement
Technology (CET) [28]. Similarly, while Clang ships with
several features implemented in more abstract compiler pass
layers, these features often require some form of Instruction
Set Architecture (ISA)-specific changes. These ISA-specific
changes are generally only implemented for popular plat-
forms, such as x86 or AArch64; their support for niche
platforms, such as those commonly found in embedded
systems, is more elusive and depends on the specific case.

Hence, the chosen hardware platform determines which
exploit mitigation features are available during satellite de-
velopment. In the following, we first survey which proces-
sors and ISAs are commonly used for space systems. We
then pick the most common platforms and survey the exploit
mitigation features that the mainstream compilers GCC and
Clang offer for these platforms. Finally, we select two open-
source satellites that fit the typical hardware and platform
criteria and apply the available exploit mitigations.

2.1. Systematization of Hardware

We surveyed all publicly tracked small satellite designs
launched between 2020 and 2023 in Table 1. We did not in-
clude designs for 2024, since the primary source of technical
details of these satellites is either research or engineering
papers that take time to publish. Hence, recently launched
satellites likely have far fewer numbers available to them.
For a comprehensive list of satellites, we used the Nanosats
Database that publicly tracks all satellite projects known to
the public in some form [38]. The database has already been
used in several research works and is generally considered
the most comprehensive data collection on small satellite
missions [39], [40].

For each satellite design in the 2020–2023 time frame,
we manually investigated only unique designs. If a satellite
design, say Planet Labs’s Dove, has been launched over
a hundred times, we only studied it once. This results in
381 unique satellite designs. We manually investigated them

through open-source intelligence to determine the exact
hardware platform, if publicly known. We could find data
with sufficient confidence for 129 (34%) of the designs. In
several cases, it is not explicitly stated that, for example, an
STM32F4 is used, but it is noted that the bus system of a
specific company is used. In these cases, we investigated this
bus system, and if we could identify the hardware platform,
we counted it accordingly. In rare cases, this may lead
to misclassifications if the company uses an unannounced
or one-off bus system. However, companies generally use
flight-proven hardware instead of new developments, mak-
ing this case negligible.

We aggregated the results, accumulated the hardware
platforms per year, and noted them in Table 1. After the
Year column, the first group of columns describes the
most common hardware platforms. We can notice that with
57 instances (44.2% of 129), ARM Cortex-M is the most
common hardware platform for satellite buses that have
public information available. We grouped all designs in the
left half with less than five occurrences under Other. The
second group of columns only includes radiation-hardened
processor designs, 11 designs in total. Notably, this means
that only 8.5% of the satellite designs we could obtain data
for include a radiation-hardened processor, making this the
exception rather than the rule.

Another critical insight from Table 1 is that, most likely,
almost all publicly known satellite designs rely on Real-
Time Operating Systems (RTOS). Linux generally requires a
Memory-Management Unit (MMU) to manage virtual mem-
ory and user processes. While it can be compiled without
MMU, it is usually considered a niche application. This also
matches the results of prior work’s satellite case studies [76].

Based on our survey, we assume that ARM Cortex-M
is the most widely used hardware platform in practice.
However, the lack of publicly available data for 66% of
the satellite designs leaves room for some uncertainty. At
the same time, our dataset suggests that radiation-hardened
designs are relatively uncommon. We speculate that such de-
signs are more likely to be used in closed-source scenarios,
such as industry or military applications, where the higher
cost of radiation hardening is justified.

2.2. Availability of Exploit Mitigations

Our previous survey identified 15 different hardware
platforms, but only three have ten or more occurrences.
We pick only these to further investigate their compiler-
level support for exploit mitigations. Table 2 shows the
availability in GCC and Clang of the most popular exploit
mitigation features for these platforms.

We focus on the defenses implemented in upstream
compilers and do not include research prototypes. While
research papers may implement their prototypes on top of
LLVM, their prototype nature makes them generally un-
suitable for production environments, especially considering
the high-reliability requirements of space systems. Further,
we consider it highly unlikely that space systems engi-
neers would adopt research prototypes rather than widely
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TABLE 1: Overview of CPUs used in satellite on-board computers (OBCs), from 2020 to 2023, based on open source
intelligence gathering. Note that results for closed-source satellite OBCs may vary. We group conventional CPUs with less
than five occurrences under Other; ARM-C is short for ARM Cortex.

Conventional CPUs Radiation-hardened CPUs No dataYear ARM-C M ARM-C A AVR32 ARM9 AVR8 Other
∑

MSP430 LEON3 PicoSkyFT
∑

2020 10 7 2 4 2 - 25 (51%) 1 - 1 2 (4%) 22 (45%)
2021 8 1 2 3 3 4 21 (42%) 1 - - 1 (2%) 28 (56%)
2022 18 5 4 1 1 10 39 (30%) 4 4 - 8 (6%) 85 (64%)
2023 21 2 2 1 1 6 33 (22%) - - - 0 (0%) 117 (78%)∑

57 15 10 9 7 20 118 (31%) 6 4 1 11 (3%) 252 (66%)

available, easy-to-access compiler features. Several papers
track the availability of exploit mitigation features across
hardware platforms [2], [69], [71] and operating systems,
focusing on academic prototypes to track existing research;
however, we want to display the current state of real-world
production-ready availability. In the following, we briefly
introduce each defense.

Stack Canaries. Stack cookies or canaries [22] are guard
values placed on the stack between local data and the return
address of a function. Before returning from the function,
the canary’s value is checked against a global ground truth,
thus detecting any modification that inevitably occurs when
attackers attempt to overflow a buffer to overwrite the return
address with an attacker-controlled target address. Both
GCC and Clang support stack canaries in different flavors:
Either all functions can be protected or only functions that
use buffers of a specific size or that call alloca.

SafeStack. A SafeStack, part of the code-pointer integrity
project [41], separates the stack into an unsafe and a safe
area. The latter stores return addresses and other data that
cannot be overwritten by an attacker, such as register spills.
Thus, buffer overflows on the unsafe stack cannot overwrite
control data. This feature is only available in Clang.

Shadow Stack. Like the SafeStack, a shadow stack [18]
protects control data by placing return addresses on a second
stack. In contrast to the SafeStack, the shadow stack only
stores return addresses instead of mirroring the full stack.
Shadow stacks are available for both GCC and Clang.

Control Flow Integrity (CFI). CFI [1] ensures that only
valid edges are taken. Previously outlined mechanisms fo-
cused on protecting backward edges, i.e., returning from
function calls to the caller. For CFI, we focus on forward
edges, i.e., virtual and indirect function calls. Before each
call, compiler-inserted code ensures the target is valid, using
allow lists or tags. In the remainder, we refer to the allow list
version, which employs compile-time static type checking
as CFI, and to the tag version, which checks the function
types dynamically at runtime, as function sanitization.

GCC implements CFI only for C++ vtables using Vtable
Verification and provides support for Function Control Flow
protection (-fcf-protection). Still, that feature requires
Intel’s CET, which makes it accessible only to x86 [70].
Shadow stacks (-mshstk) require the same technology [28]
and SafeStacks are not implemented. This makes GCC un-

suitable for hardening embedded devices firmware, espe-
cially in our case.

LLVM supports CFI in the allow-list and tag flavor
described above on ARM Cortex-A and M as well as stack
canaries, which we tested. While LLVM generally also sup-
ports SafeStacks and shadow stacks, they lack support for
the bare-metal API triple (arm-none-eabi). When enabled,
upon function start, LLVM calls a special function that needs
to be developer-supplied to set up the SafeStacks, which
essentially amounts to missing support.

While GCC and LLVM readily support ARM Cortex-A
and M, AVR32 differs. All occurrences of AVR32—not
to be confused with AVR 8-bit commonly deployed on
Arduinos—stem from the satellite integrator GomSpace,
which deploys the chip in its NanoMind A3200 board. Only
a GCC toolchain delivered by Microchip Technology Inc.
appears to implement AVR32 compiler support [7]. We
could not test the support of stack canaries for this target.
However, considering the overall unsuitability of GCC for
our case, we disregarded it as an option (cf. Section 6).

2.3. Target Selection

We have found that ARM Cortex-M is the most prolif-
erated satellite platform, and only LLVM supports relevant
exploit mitigation techniques. We select two targets to eval-
uate the impact of exploit mitigations on satellites.

2.3.1. ORESAT. ORESAT 0.5 is an open-source 2U Cube-
Sat, the most common form factor for small satellites [40].
The satellite launched on August 16, 2024, as part of the
OreSat initiative to promote accessible space technology and
education. The satellite’s software is developed in C and
runs on an STM32F439 microcontroller, which serves as the
main Command, Communications, and Control (C3) system.
This microcontroller manages critical functions and facili-
tates communication between various subsystems, including
the Ground Station, using a custom Telecommand (TC) and
Telemetry (TM) format for Ground Station communication
and the standardized ECSS CANbus Extension Protocol
for internal satellite communications. ORESAT employs the
RTOS ChibiOS RTOS [30], [51], [66].

2.3.2. ACUBESAT. ACUBESAT is an upcoming open-
source 3U CubeSat aimed at advancing accessible space
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TABLE 2: Overview of compiler-level support for exploit
hardening techniques [28], [70], [71] for the three most
common CPU platforms in satellite OBCs.

Platform Compiler Stack
Canary

Safe
Stack

Shadow
Stack CFI FSan

ARM Cortex-M GCC ✓ ✗ ✗ ✗ ✗
ARM Cortex-M LLVM ✓ ✗ ✗ ✓ ✓
ARM Cortex-A GCC ✓ ✗ ✗ ✗ ✗
ARM Cortex-A LLVM ✓ ✓ ✗ ✓ ✓
AVR32 GCC ? ✗ ✗ ✗ ✗
AVR32 LLVM – – – – –

technology and providing educational opportunities. The
satellite’s software is developed in C++ and operates
on an ATSAMV71Q21B microcontroller—a 32-bit ARM
Cortex-M7—and it employs FreeRTOS, a real-time oper-
ating system. Telecommand and telemetry communications
adhere to the ECSS-E-ST-70-41C standard, a widely recog-
nized protocol in the aerospace industry [3], [16].

In conclusion, we have seen that the ecosystem mainly
evolves around the same platforms commonly deployed in
terrestrial applications and is widely investigated in aca-
demic research. We have also identified ACUBESAT and
ORESAT as representative samples in our further investiga-
tion. In what follows, we will explore the impact of space-
based radiation on exploit mitigations in satellite firmware.
Since exploit defenses often rely on comparing certain (ran-
dom) values, like stack canaries or function pointers and
tags in CFI, it can be reasonably assumed that bitflips over-
proportionally impact them. Therefore, it seems plausible
that such measures are not deployed due to uncertainty
around their impact in high-radiation environments.

3. Single Event Errors

Single Event Errors (SEEs) are unintended disruptions
in a system’s memory or processing components caused by
external factors, particularly ionizing radiation from cosmic
rays or radioactive decay. These disruptions can lead to
bitflips in digital circuits without any permanent damage
to the hardware. SEEs have traditionally been a concern in
high-reliability environments, such as aerospace and safety-
critical systems [32].

The fundamental mechanism behind SEEs is the impact
of high-energy particles, which can cause localized ioniza-
tion within microelectronic devices. This ionization induces
transient electrical charges, changing stored data or logic
states in memory cells or processor registers. Due to greater
cosmic radiation exposure, such bitflips are notably more
common in space or high-altitude environments. They can
also occur at ground level, where lower energy particles
can still affect advanced microelectronics. Transient memory
faults caused by SEEs are often modeled as random single-
bit errors due to their typical sparsity and distribution [23].

The frequency of such faults appearing depends on the
current solar activity and the level of protection the space
assets receive from external factors such as Earth’s Van

Allen belt that shields radiation, or from radiation hard-
ening measures deployed on the spacecraft. The specific
number of bitflips similarly varies; for example, a recent
satellite measured 2,128 Single Event Upsets (SEUs) over
a period of 286 days, statistically amounting to one SEU
every 3.4h [49]. Such transient memory faults caused by
SEEs are especially concerning when they result in Silent
Data Corruption (SDC), where data errors occur without
immediate detection.

3.1. Modeling SEEs

We rely on existing literature, primarily from the
dependable systems research area, to accurately model
SEEs [15]. Since the exploit mitigations we evaluate rely on
values stored in RAM and code segments, we focus on the
physical storage media for this memory, primarily Static-
Random-access Memory (SRAM). Prior work has shown
that the probability of particle strikes is independent of the
previous particle strike [43]. This assumption allows us to
observe bitflips independently without considering that the
probability distribution for the next bitflip differs condition-
ally. Further, SRAM faults are uniformly distributed; hence,
each bitflip in an SRAM region is equally likely as in any
other region [67]. These assumptions allow us to view each
bitflip independently, as the probability of when (temporal
component) and where (spatial component) are independent.

Next, we must consider how many bitflips we must
consider at each step. Previous research has shown that
multi-bitflips, where a single particle causes multiple bits to
flip, can be caused by a particle hitting a memory cell that,
for example, holds a 4-bit state, causing it to jump multiple
levels. Further, depending on the type of radiation and the
memory designs, a single particle strike may also cause an
effect on multiple cells [25]. Intuitively, multi-bitflips have
a higher chance of outright crashing a system compared
to single bitflips. Since we want to evaluate the impact of
exploit mitigation techniques on crash rates, it makes sense
to look into single bitflips, as those have the lowest chance
of crashing a system on their own. If the system crashes due
to bitflips anyway without exploit mitigations, it will also
crash with them.

Additionally, Sangchoolie et al. have shown that single
bitflips have the highest chance of causing SDC, i.e., bits
that impact the program’s outcome without crashing it [58].
From an exploit mitigation perspective, such SDCs might
be turned into actual crashes, for example, when corrupting
a code pointer, which CFI would detect.

In conclusion, we want to consider single bitflips, which
are independent in their temporal and spatial dimensions for
memory regions.

4. RADSIM Design Challenges

In this section, we elaborate on the challenges involved
in evaluating the impact of binary hardening on full system
firmware. We must account for the impact on non-hardened
binaries as a baseline to observe the impact. We discuss the
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methods of related work and whether these strategies are
effective in this regard. Finally, we propose the high-level
concept for RADSIM.

4.1. Problem Statement

Our goal is to answer the open question of whether
radiation-induced bitflips impact exploit mitigation features
deployed in satellite firmware. So far, Table 1 established
that ARM Cortex-M is the most commonly deployed CPU.
Further, these satellites use bare-metal firmware, i.e., they
contain a compiled-in RTOS and do not run in the userspace
of an OS like Linux. This already raises the first challenge.
We need a full system emulation approach to run the full
system firmware for our fault injection. Consequently, since
bare-metal devices do not have the same notion of input and
output via defined standard interfaces, we need to establish
a method of using MMIO read as input to the program and
MMIO writes as output from the program to check whether
it successfully performed its operations.

We also want pure software fault injection since we are
evaluating pure software mitigation features. We do not need
extensive fault injection on the simulated transistor level
or cycle-accurate processor simulation. Such simulations
have recently been shown by Papadimitriou et al. [52], who
presented the significance of identifying the exact location
in the full stack of hardware and software where faults
manifest. For our purpose, elaborate hardware simulations
include unnecessary noise and performance overhead unre-
lated to binary hardening strategies.

Furthermore, we want to compare the exact executions
of the same input between two programs, which requires
deterministic behavior. This way, we can compare exact
execution traces of a hardened and non-hardened binary and
localize faults to see if the hardening technique manifests
in any significant form. Otherwise, comparing executions
of different inputs will cause significant noise due to, e.g.,
functions with stack canaries being called more or less often
than by the input of the other binary.

Finally, from the previous replayability requirement, we
can deduce that any executions in the fault injection ap-
proach must also be fully binary-agnostic. In particular,
when and where to inject a fault must not depend on the
binary under test because a stack canary-enhanced software
executes more instructions for the same input. Therefore,
the fault injection must not depend on the current program
counter (PC), the number of basic blocks, or similar factors.

4.2. Related Work

Existing research on fault injection, especially from the
area of dependable systems, is plentiful [19], [29], [44],
[53], [73]. In general, fault injection approaches can be
divided into approaches that use precise simulators, such as
gem5 [14], or an emulator such as QEMU. As per our re-
quirement, we do not need sophisticated simulations. Thus,
we focus on emulator-based approaches. In the following,

we consider several approaches relying on QEMU as an
emulator framework for a closer comparison.

QEFI [20] uses either a probability-based trigger or a
GDB-based interrupt trigger, such as the PC, to decide
when to inject a fault. As discussed above, a PC-based or
similar trigger does not work for our approach, nor does
a probability-based trigger. Similarly, An et al. use a GDB
server to inject faults based on a pre-defined trigger [6],
as well as Sini et al., who propose a QEMU testbench
setup [65]. Holler et al. [34] present work on fault mod-
eling, i.e., which type of fault to use, while also using
pre-defined fault triggers with static addresses. Ferraretto
et al. present an approach that can treat different fault
types but also relies on a probability of whether a fault
is injected, making it equally unsuitable [26]. Further, it
assumes Linux userspace applications, breaking our bare-
metal requirement. Hauschild et al. present a plugin for the
QEMU-internal Just-in-time code compiler (TCG), which
allows for platform-independent fault injection [33]. Besides
several different parameters, the work also uses a fault
address to describe where a fault should appear. Recently,
Almeida et al. [5] used QEMU-internal modifications to in-
ject faults at different places, such as instruction translation
or memory accesses. However, the approach also relies on
pre-defined addresses to trigger the injection.

In summary, previous work either relies on pre-defined
fault injection points via PCs or uses a fixed failure probabil-
ity for faults to occur at specific times. However, both strate-
gies are not binary-agnostic: PCs change when recompiling
a binary with different exploit hardening techniques due to
the additional code. Hence, the PC-based method does not
allow for a meaningful comparison without extensive (and
often manual) PC alignment efforts. Similarly, timing- and
probability-based fault injection approaches are also not ag-
nostic, as execution timings differ due to the code changes.
Moreover, probability-based methods carry the problem that
the values we are interested in have a small size (i.e., a
canary consists of only four bytes). Hence, we assume that
any noise introduced due to the failure probability will likely
overshadow any measured effect. Due to these limitations,
previously proposed approaches are unsuitable. Instead, we
need a a novel method that captures all possible impacts on
the security techniques in a binary-agonistic way.

4.3. RADSIM Design Concept

Intuitively, limiting the value domain appears unavoid-
able. A fault must be injected at selected places or due to
a probability. To this end, to be fully binary-agnostic and
deterministic, we plan to evaluate every possible bitflip, even
if it appears unfeasible at first glance. Bitflips can occur
in any memory cell (spatial dimension) and at any point
during program execution (temporal dimension). Attempting
to exhaustively simulate bitflips across both dimensions
would result in a combinatorial explosion, rendering com-
prehensive analysis computationally infeasible.

To overcome this challenge, RADSIM utilizes an ap-
proach that effectively reduces the two-dimensional prob-
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lem of spatial and temporal bitflip occurrences into a one-
dimensional analysis. The core principle lies in focusing
on memory read operations as critical points where bit-
flips manifest observable effects on program behavior. By
iterating through all memory read operations and injecting
bitflips into every possible bit of the data being read, we
capture the impact of bitflips precisely when they influence
the execution flow. The rationale behind targeting memory
read operations is based on the observation that a bitflip
in memory affects the program only when the corrupted
data is accessed and utilized. By aligning bitflip injections
with memory reads, we inherently account for the tem-
poral aspect of when a bitflip would affect the program.
This alignment allows us to simulate the effect of bitflips
occurring at the exact moment they would have the most
significant impact, such as during the checking of stack
canaries—and a canary only exists for a brief period—or
CFI validations. Furthermore, we only target read operations
and not write operations because only a value being read into
a program can have an effect, and any bitflip introduced by
a write operation has to be read (where we inject bitflips)
before having an impact.

By systematically flipping each bit in read data at each
memory access, we exhaustively cover all possible single-bit
corruption scenarios without limiting or explicitly iterating
over the time dimension. Hence, in the following, we will
describe an approach to efficiently evaluate all single-bitflip
scenarios for a target program given an input.

5. RADSIM Implementation

We now describe our prototype implementation of RAD-
SIM consisting of four components depicted in Figure 1.
❶ We use the state-of-the-art multi-input stream firmware
fuzzer HOEDUR [61] to generate test cases via fuzz testing
the plain variant of the target. ❷ We replay the inputs on the
plain flavor to extract an MMIO reads and writes reference
trace against which we can compare the plain variant later.
❸ In the next step, we replay plain MMIO reads on the
hardened flavors, e.g., the stack canary binary, and check
that the execution flow matches. We re-record the execution
and create the necessary reference traces for each flavor.
❹ Finally, we run the reference traces for each flavor in our
RADSIM bitflip engine to successfully test every possible
bitflip in the firmware at any point during the execution.

Our implementation of RADSIM is based on HOEDUR
but has little in common with typical fuzzing. Instead of fo-
cusing on fuzzing techniques, RADSIM utilizes the firmware
execution environment that allows us to re-execute previous
runs using the aforementioned traces to load snapshots,
modify the memory for fault injection, and more. While
we use HOEDUR to generate test case data (as shown in
step ❶), this could be replaced by other input generation
approaches, such as a software-in-the-loop simulation or
similar techniques. In total, RADSIM is implemented in
roughly 4,000 lines of new code.

5.1. Generating & Replaying Test Cases

Our RADSIM approach relies on dynamic testing, where
we execute the target firmware to test the impact of bitflips.
We need inputs that satisfy input constraints to execute the
target firmware to reach the code commonly executed on
the target in an operational environment. Unit tests and
similar tests supplied through the firmware development
process are usually insufficient, as they commonly focus
on isolated aspects, such as a specific parsing functionality.
Hence, we rely on full system fuzzing to automatically
create full system test cases, where the entire firmware is
rehosted and executed. The inputs generated during this
fuzzing process can then be replayed, yielding test cases.
The purpose of these test cases is to include all I/O data that
would make runs between different executions and flavors
indeterministic. This I/O data consists of interrupts and
MMIO operations, which are recorded and stored in each
test case. Another common source for I/O is Direct-Memory
Access (DMA), which HOEDUR does not support directly,
but only by treating it as MMIO accesses. Therefore, our
approach implicitly includes rudimentary DMA support.
This way, our test cases capture all potential I/O and can
replay them between executions, which eliminates all I/O-
based randomness and indeterminism. In summary, using
this approach, we only have a single source of I/O (and
therefore randomness), which eliminates the indeterminism.
We record this I/O once on the plain flavor and then replay
it across the hardened flavors.

Further, our approach aims at comparing differently
flavored binaries, i.e., comparing a non-hardened (plain)
variant with a stack canary variant. To properly compare
runs between these similar but ultimately different binaries,
we need to be able to replay an input from the plain flavor
on any hardened flavor.

Finally, since fuzzing campaigns generally generate
more test cases than our RADSIM approach due to limited
computing resources, we must pick a subset of inputs from
the entire set. For reference, in our evaluation, we found that
exhaustively testing a single input takes 75 minutes using
98 cores, resulting in 122.5 core hours, making it unfeasible
to test thousands of inputs.

In the following, we describe our fuzzing setup, our
setup to replay test cases across flavored variants, and
elaborate on our test case selection strategy.

5.1.1. Initial Fuzzing. Our work utilizes HOEDUR, a spe-
cialized firmware fuzzer designed to enhance firmware
fuzzing effectiveness through multi-stream input han-
dling [61]. Traditional firmware fuzzing methods typically
interpret inputs in a flat, sequential manner, often leading to
instability due to the mixed handling of data from different
hardware interactions. HOEDUR addresses this by introduc-
ing a multi-stream approach that separates input streams
based on distinct MMIO addresses. This distinction allows
for precise targeting and manipulation of data streams,
reducing the risk of unintended cross-stream interactions.
Additionally, HOEDUR integrates MMIO modeling from
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Figure 1: Overview of RADSIM

Fuzzware [59], which dynamically reduces the input space
for each MMIO access, streamlining fuzzing efforts and
enhancing stability and reproducibility in fuzzing sessions.
Internally, Fuzzware uses symbolic execution to predict if,
e.g., a four-byte MMIO access is being fully utilized. In
practice, only a single bit might be used to determine a flag
out of the four accessed bytes. Hence, the fuzzer only has
to account for the single bit, drastically reducing the input
space and increasing efficiency.

By default, HOEDUR identifies the input stream via a
pair of PC and MMIO addresses, i.e., if the same MMIO ad-
dress is read from two different PC addresses, it creates two
separate input streams. Since PC addresses differ between
our flavors, we opted for the input stream identification that
only utilizes MMIO addresses; while this might degrade
fuzzing performance, it is necessary to ensure replayability.

We fuzzed each plain target flavor until we achieved
sufficient coverage in areas of interest. In satellites, the
main focus area is the telecommand handlers and protocol
decoding stack since they are the main code path parsing
potentially corrupted data, which has also been the main
focus area of previous research [31], [60], [75]. We refer
to the full set of fuzzing inputs generated during the initial
fuzzing as test cases.

5.1.2. Flavored Binary Replay. In the next step, we use the
test cases and replay them in the hardened binary flavors.
Initially, we intended to replay the inputs using the more
solid multi-input stream approach from HOEDUR, which
would tolerate a certain degree of out-of-order replay regard-
ing MMIO inputs. However, we noticed that the Fuzzware
MMIO models that HOEDUR relies on for each MMIO
read differ between the flavors. This likely stems from the
symbolic execution used to calculate these access models
having issues with stack-canary functions.

To overcome this, we first replay the plain variant and
record the exact four-byte MMIO values delivered to the
firmware and their precise order in an MMIO trace. This
way, the result of the MMIO modeling is already baked
into the four-byte value. In the next step, we run the flavored
binary and use the MMIO trace from earlier. This way, we
can replay the input without needing the MMIO models.

Further, for the flavored binaries to correctly replay,
they must be fully deterministic. They must not utilize any

counter tied to their execution time, such as the number of
executed basic blocks or the PC; this stems from the binary-
agnostic requirement we established earlier (cf. Section 4.1).
Several RTOSs rely on a systick feature provided by
the processor, which emits periodic interrupts. Since this
feature is tied to execution time, its exact timing would
vary between variants. Hence, targets must be adapted not to
utilize this feature, or the systick feature must be triggered
only at pre-defined points that do not vary between variants.

Other sources of indeterminism can stem from inter-
rupts, and general I/O. Interrupts in our setup are only
emitted by the fuzzer, allowing us to take control of them.
Hence, interrupts are baked into the replay traces, which
makes them same across

After properly replaying the test cases on the defended
variants, we record full RAM and MMIO traces, which
detail all read and write operations. We later use these
traces to determine whether the firmware is still behaving
as expected during our fault injection and to determine the
order and place of RAM reads.

5.1.3. Test Case Selection. The previously described
fuzzing process produces a significant number of test cases,
each yielding a unique set of edges in the target binary.
Evaluating all test cases with our approach is not feasible;
hence, we pick a subset. We opt to cover as many parts of
the program as possible, and our subset should maximize
code coverage. Therefore, we calculate the block coverage
for each test case using a bitmap akin to the original fuzzing
process. In detail, we transform the blocks covered by each
input into a bitmap using a bloom filter. This yields bitmaps
in which a higher number of set bits indicates a higher
coverage, and equal bits in different inputs come from the
same covered basic block.

We first select the input with the highest bitmap coverage
and then, from all the remaining inputs, we select the one
with the most additional bits set. We continue this until we
have covered the entire bitmap. In simple terms, the selected
test cases represent a minimized fuzzing corpus that covers
every basic block (however, not necessarily every path).
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5.2. RADSIM Engine

We develop a custom radiation simulation engine based
on HOEDUR, internally based on QEMU, a broadly used
emulation engine. Beyond the previously described test case
generation, we also leverage HOEDUR’s ability to manage
and manipulate a firmware’s execution flow, particularly the
snapshot feature [61]. On a high level, we load the target
firmware and the target test cases into our prototype, which
yields one execution of the target. Then, we step through the
program to inject our bitflips (cf. Section 5.2.1). Halting at
every basic block, we iterate through each memory access
(i.e., RAM and .text access). For each memory access, we
iterate through each accessed bit, and for each bit, we flip
that and only that bit and continue the program’s execution
without further stopping. During that execution, we track the
execution (cf. Section 5.2.2) by comparing it to the reference
trace, e.g., we check if the execution flow or the MMIO
reads or writes change, and we record that accordingly. After
the execution is complete, we restore the snapshot recorded
at the basic block where the introduced bitflip is and move
to the next bitflip.

In the following, we describe the bitflip injection part
and the execution tracking in more detail.

5.2.1. Bitflip Injections. We load the target test case and
firmware into our corpus. First, we process the data from
the test case to extract a basic block execution trace that
lists the memory accesses performed at each basic block.
Notably, this is not done per unique basic block but per basic
block in execution order. We start the program’s execution
and keep it running without interfering until we arrive at
the defined starting point. In our cases, we first stop at
the main function, as the initialization before that mostly
consists of large memory clearing and memory copy loops
that initialize the memory, for example, with zeros, and then
copy the pre-existing global data to the memory location
expected by the application. We identify the address of
the main function though debug symbols in the firmware’s
ELF file. (1) At the starting spot (e.g., main), we halt the
execution and create a snapshot. The HOEDUR execution
engine provides the snapshotting mechanism and keeps track
of the program’s memory and execution state, which can
be restored later. (2) Next, we iterate through all memory
accesses performed by the firmware in the basic block
currently halted at (current BB). From the execution trace,
we know the exact PC, memory address, access size, and the
value read. (3) We iterate through each accessed bit. If the
bit is located in a text section, e.g., if it contains memory to
be executed, we apply the bitflip immediately to the memory
and clear QEMU’s translation buffer, which keeps a cache of
QEMU’s Just-in-time (JIT) engine results. Since we change
the instructions, we have to force QEMU to regenerate its
JIT code. We rely on the assumption that from the start
of the basic block until the execution of the instruction,
the code does not change. If the bit is located in a data
region, we do not apply the bitflip immediately; rather, we
delay its injection until the actual execution of the targeted

load instruction. In some scenarios, an address is written
to before being read in a single basic block, for example,
when pushing to the stack at a function’s preamble, before
returning and popping the register again, which triggers a
memory read.

Having injected the bitflip into the current BB, we
continue and track the program’s execution, which we detail
in the next section. After the execution, we restore the
previously created snapshot and clear the injected bitflip.
At this point, we have fully restored the program’s state
from before the bitflip. Then, our access iteration repeats
the process for the next bit.

After concluding all bitflips for the current BB, we move
to the next BB. During this step, the program’s execution
must diverge from our reference trace. Otherwise, we report
an error in the experiment. Upon arriving at the next BB, we
overwrite our previous snapshot and restart our bitflip loop.
This way, we move through the entire program, through
each access, and each bit in each access, and we test the
behavior for each possible bitflip. Additionally, during these
tests, we step through the program in an untainted manner
(i.e., without bitflips present) once and check that it does
not deviate from the reference, proving that the execution
behaves as expected.

5.2.2. Execution Tracking. After injecting a bitflip, the
target program is executed to track for differences in writes.
Before the first execution, we extracted the expected order
of BBs and the exact MMIO write and read values. This
allows us to constantly check for any deviation during the
program’s execution. For example, if, during the execution,
the target moves to a BB that diverges from the reference,
we record a desynchronization (BB desync). We only record
the first BB desync since most likely all subsequent BBs also
differ, since the program execution path changed. However,
we do not stop the program execution; instead, we keep it
running to observe the changed behavior.

Further, we track each MMIO read desync, matching the
MMIO address and PC address that attempted the read, and
the access size and we record the first desynchronization.
We also record a desync if the program attempts to read
more MMIO values than in the trace. However, in this
case, we terminate the execution since our execution trace
cannot generate new input. Similarly, we track MMIO write
desyncs, compare the value being written, and stop if more
writes occur than expected.

In conclusion, RADSIM replays the input from fuzzing
the plain target flavor on the hardened binaries to create
the same execution paths. The plain and hardened flavors
are fault-injected with every possible single bitflip, and the
outcomes are recorded.

6. Evaluation

We evaluate the impact of SEEs on exploit mitigation
techniques using our RADSIM prototype. We first evaluate
the coverage of our test cases, forming the foundation for
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TABLE 3: Statistics of the hardened binaries: Number of
basic blocks, instructions, functions, and .text section size.
In parenthesis: The ratio compared to plain.

Flavor Basic Blocks Instructions .text size Functions

ORESAT

plain 8,023 (1.00) 43,276 (1.00) 126,930 (1.00) 1,269 (1.00)
canary-all 9,832 (1.23) 57,708 (1.33) 166,136 (1.31) 1,269 (1.00)
canary-strong 8,250 (1.03) 44,723 (1.03) 131,186 (1.03) 1,283 (1.01)
cfi-icall 8,249 (1.03) 43,681 (1.01) 128,760 (1.01) 1,344 (1.06)
san-func 8,743 (1.09) 46,743 (1.08) 142,410 (1.12) 1,316 (1.04)

ACUBESAT

plain 9,405 (1.00) 52,713 (1.00) 157,060 (1.00) 2,925 (1.00)
canary-all 13,586 (1.44) 95,409 (1.81) 262,136 (1.67) 2,898 (0.99)
canary-strong 9,712 (1.03) 56,316 (1.07) 166,920 (1.06) 2,905 (0.99)
cfi 9,473 (1.01) 52,828 (1.00) 159,664 (1.02) 2,961 (1.01)
cfi-icall 9,728 (1.03) 53,085 (1.01) 159,236 (1.01) 2,963 (1.01)
san-func 9,545 (1.01) 54,220 (1.03) 163,648 (1.04) 2,953 (1.01)

our fault injection campaigns. Next, we discuss the flavored
binaries and compare their general statistics. In our first
analysis, we compare the raw outcomes of all our fault in-
jection experiments and present the different ratios between
the outcome types. We then calculate a total failure rate
by resolving our time-domain assumption (cf. Section 4).
Finally, we compare the localization of faults between non-
hardened and hardened targets to investigate the primary
source of faults.

6.1. Test Case Coverage

We start by evaluating the foundation of our previous
steps: the initial fuzzing runs, which we use as test cases
for the fault injection. We fuzzed ORESAT on 196 cores for
48 hours, amounting to 9,408 core hours. Further, we fuzzed
ACUBESAT on 196 cores for 60 hours since we observed
more coverage and the binary has more basic blocks overall,
resulting in 11,760 core hours.

After fuzzing ORESAT, we achieved a coverage of
3,352 (42%) BBs out of 8,023 BBs; for ACUBESAT, we
achieved a coverage of 5,869 (62%) of 9,405 BBs. The
coverage is computed over the entire binary, including the
operating systems, hardware abstraction layer, and other
components not directly developed by the satellite team.
Hence, the binary also contains portions of code that are
unreachable in any fuzzing scenario. As usual in fuzzing
scenarios without instrumentation, estimating the reachable
code from the total code is impossible.

6.2. Targets and Flavors

Table 3 provides an overview of the general charac-
teristics of the target binaries examined, namely ORESAT
and ACUBESAT, which we picked as representative small
satellite firmware implementations in Section 2.3. Both
projects utilize the ARM Cortex-M architecture and operate
on real-time operating systems, ACUBESAT on FreeRTOS
and ORESAT on ChibiOS. To evaluate the resilience of these

binaries, we compiled each firmware in several configura-
tions, or flavors, each applying a distinct combination of
exploit mitigations. The configurations examined are:
plain. This baseline configuration contains no exploit miti-
gation techniques, serving as a reference to assess the over-
head and structural changes introduced by the mitigations.
canary-all. Includes stack canaries for all functions
(-fstack-protector-all), regardless of whether they con-
tain a stack buffer. This configuration represents the maxi-
mum protection achievable through stack canaries, as it ap-
plies uniformly to all functions. It is designed to evaluate the
highest possible impact that canaries or similar mitigations
may have on binary structure and runtime behavior.
canary-strong. Adds canaries to functions with an existing
stack, even if there is no stack buffer but simply stack usage
(-fstack-protector-strong). This selective application
allows for a more optimized performance profile compared
to the full protection of canary-all, as only functions with
stack interactions are protected.
cfi-icall. Introduces CFI using a static check to verify
whether a given function may legally be called from a
particular call site (-fsanitize=cfi-icall). This flavor
specifically addresses indirect function calls via function
pointers, as ORESAT is written in C and does not use C++
vtable calls. ACUBESAT, on the other hand, which has
parts in C++, could theoretically benefit from additional CFI
checks for virtual calls, but this is not explored in the current
configurations for comparability between the two targets.
san-func. Introduces more comprehensive control flow
protection compared to cfi-icall by dynamically checking
function pointers’ types using tags embedded within each
function body (-fsanitize=function).

In addition, we compiled all binaries with -flto, which
enables Link Time Optimization; as this is required for the
CFI and function sanitization options, we included them in
all flavors for increased comparability. In the same spirit,
we also added -fno-inline to prevent the compiler from
inlining functions, as this behavior might change based on
the mitigations. We chose the optimization level -O3 for all
builds.

As expected, the canary-all targets increase the basic
block counts significantly by 23% and 44%, respectively; for
the other flavors, we generally observe a 1%–10% increase.

6.3. Stacked Outcomes

For our first experiment, we track the different outcomes
of each fault-injected run, as shown in Figure 2. We exe-
cuted RADSIM on 75 test cases for ORESAT and 35 for
ACUBESAT, which we selected according to our coverage
maximization strategy (cf. Section 5.1.3). We reduced the
number of test cases compared to ORESAT due to the longer
average execution time. The test cases result in a total of
8 billion bitflip experiments for ORESAT and 13 billion
for ACUBESAT. During each execution, we recorded three
different binary outcome states, where one of the following
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(b) ACUBESAT.

Figure 2: Stacked outcomes of an average fault injection campaign for both target satellites. We tracked three potential
desynchronization types for each run, where the fault-injected run can differ from the reference, and we show all
combinations.

criteria varies from the reference trace: Control flow path
(here: basic blocks), MMIO reads, or MMIO writes. Three
binary states result in eight possible combinations, which
equates to the eight labels in the figure, where full means
that all three are desynchronized and none implies that no
change in behavior was observed. We accumulated the eight
categories for each input and calculated the arithmetic mean
over all inputs. Since we use total count here, the Y-axis
refers to the average number of outcomes in each category,
and the top of the bar marks the total number of bitflips
performed in that category. For example, for canary-all–all,
we performed 32 million fault injection runs on average per
input in ORESAT; hence the Y-Axis notes the total count
of outcomes in millions (1e6). We tested each flavor, and
we separately report the numbers for RAM, where we only
injected into load operations, text, where we only inject into
instructions, and all, combining both.

As anticipated, RAM exhibits fewer bitflip-induced
faults, given that not all instructions interact with RAM.
Further, the most dominant colors are blue (full desync) and
gray (no desync). In most cases, a desync correlates with a
behavior change propagating to all aspects, i.e., different
reads, writes, and control flows. Next, we can see that
canary-all has the most significant overall bitflip counts,
which correlates with the increase in .text section size from
Table 3. Similarly, we can see that the other flavors roughly
follow the .text section size increases in the total number
of bitflips, except san-func. san-func places tags before every
function for dynamic type checking; these tags take memory
but are not used for almost any function. Hence, the change
in .text section size does not materialize in a different
bitflip count.

Looking at Figure 2, we cannot see any outlier where the
number of bitflips or the ratios significantly deviate from the
plain flavor, except the previously explained ones. This first
hints towards the hardening techniques not impacting bitflip

susceptibility beyond their code size increase. However,
these numbers only describe all possible outcomes a single
bitflip could cause in the program. Simply, they explain
what happens if a bit in memory flips and if the program is
reading it at the time of flipping, not earlier or later.

6.4. Overall Impact Study

In the subsequent evaluation, we want to estimate the
overall impact of exploit mitigation features on the reliability
of the satellite firmware. To do this, we need to recall that
radiation can cause any bit in memory (spatial) to flip at any
time (temporal); there are two dimensions to consider when
calculating the impact of a single, random bitflip. Making
this value space usable for analysis, RADSIM follows the
program’s path through this spatial-temporal domain and
only tests flips that affect the program, effectively reducing
the value space to one dimension (cf. Section 4). This results
in a probability for an outcome (i.e., the desync type), given
that the random bitflip hits the program’s path.

Now, we separate the spatial and temporal domain to
include the complete value domain and calculate the failure
probability of full program runs. This metric also accounts
for additional runtime induced by exploit mitigation fea-
tures, showing the overall impact. In other words, if a bitflip
occurs at a specific place (spatial), what is the probability
that the program fails due to that bitflip.

Pfault(program) = 1− Psucc(program)

= 1−
n∏
t

(Psucc(BB t)) = 1−
n∏
t

(1− Pfault(BB t))

= 1−
n∏
t

(
1− bits fault,t

bitstotal

)
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Figure 3: Failure probability when assuming a 5 MB chip
size and one random bitflip at every point in time. The
bottom chart shows the failure probability normalized to the
plain binary.

To calculate this value, we must first define what the
condition is for our program to fail. We consider any run a
fault run if the MMIO writes something different from the
reference run because if a program writes other values to pe-
ripherals, it most likely causes some observable malfunction.
This is akin to observing the result of the calculation. Hence,
any run outcome that includes an MMIO write desync is
considered a fault run. Using our data, we can calculate
the probability Pfault(program) of a program failing, where
bits fault,t describes the number of flipped bits that lead to
a fault for a given basic block. In our implementation, we
mention that we step through each basic block and test each
possible bitflip. We consider each BB a unit in time and
the number of bits that lead to a fault when flipped, the
faulting bits at that point in time. For the total available bits
bitstotal , we have to assume the total memory size. If we
assume a chip size of 5 MB to fit the small firmware and
one random bitflip at every point in time (basic block), we
get a failure distribution over different program inputs as
shown in Figure 3.

The top plots show the failure probability for each flavor,
given that a bitflip occurs somewhere in the memory. The
bottom plots show the ratio of the flavors compared to plain.
We again split the data into RAM only inject, where we only
inject faults into load operations, and all flips, where we
include both RAM and .text flips. From the ratio plots,
we can see that canary-all induces a sizable impact on the
bitflip resilience by making the program 2.7 resp. 3.6 times
more likely to malfunction when bitflips in RAM occur.
However, using the weaker canary-strong option leads to an
increase of only 14% for ORESAT and 19% for ACUBESAT.
Further, cfi-icall and san-func only come with marginally

higher impacts compared to plain, with a 1.4% and 2.1%
increase for ORESAT and 0.4% and 0.5% for ACUBESAT.

6.5. Fault Localization

The results of Section 6.4 show an increased fault prob-
ability for hardened binaries, particularly if stack canaries
are enabled. To further analyze the cause of this difference,
we compare the fault probabilities as depicted in Figure 4.

We select two hardened binary flavors for Figure 4.
The top and bottom charts in this figure show the fault
probability of each basic block grouped by function. Each
vertical bar represents one function, and each dot indicates
the probability of a fault due to a bitflip in this block. The
data is accumulated over all runs. The top chart shows the
unhardened, plain binary and the bottom one shows the
hardened flavor. The chart in between shows the difference
between the plain and hardened charts, adjusted for basic
block alignment and with noise reduced. In detail, the align-
ment utilizes the fault probability of each function’s basic
blocks to identify added blocks in the hardened function
body. It then aligns the values of the plain and hardened
functions to minimize the differences while strictly keeping
the basic block order. The result is that an additional basic
block only shows as one different dot instead of shifting all
the following blocks and making all remaining dots differ.
Lastly, we hide small differences from the difference chart to
make larger differences visible. This accounts for the noise
introduced by the compiler optimizations for the different
binary flavors.

Figure 4a demonstrates the rather small impact of CFI
on the fault probability. Differences are sparse and evenly
distributed over the functions’ basic blocks. Figure 4b shows
the impact of canary-all. This figure excludes the bitflips
to instructions, i.e., the .text section, to highlight the
impact of the stack canaries stored on the stack. This chart
clearly shows an increased fault probability throughout all
functions. Further, the additional faults are primarily located
at the bottom of the chart during the functions’ prologue,
where the canary is read from a global variable and stored
on the stack. From the charts, we can conclude that we can
locate the faults, and they appear as expected.

7. Discussion

Our results and approach warrant further discussion. We
first examine the relationship between failure probability and
code size increase. Next, we put our results into a real-
world context and discuss the fault reason metric used in our
evaluation. Finally, we address the challenges arising from
evaluating academic hardening techniques, the implication
of radiation hardening, as well as the limitations of our
approach along with potential directions for future work.

7.1. Failure Probability vs. Code Size

Our results from Section 6.4 show that stack canaries
impact the failure probability far greater than code size
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Figure 4: Fault probability per basic block grouped by function. Each vertical bar depicts a function, of which each dot
represents the fault probability of bitflips in that block. The first block per function is at the bottom; lighter colors indicate
a higher fault probability. Comparing the unhardened and hardened versions reveals locations impacted by mitigations.

increases alone can explain. For example, between plain
and canary-all, code sizes increased by 31% (ORESAT)
and 67% (ACUBESAT). However, as shown in Figure 3,
the corresponding failure probabilities increased by 171%
and 263% (2.71 and 3.63), respectively. However, canary-all
is unlikely to be deployed in real-world scenarios. Instead,
canary-strong is a more realistic candidate: Here, the failure
probability increases by 14% and 19%. In practice, this
means that stack canaries alone increase the probability of
a satellite malfunction due to a single event error by a
value between 14% to 19%. Such malfunctions could lead to
crashes (reducing system uptime) or more subtle errors, such
as ill-formed instructions for peripheral accesses (MMIO
writes), which in turn could lead to permanent damage.
Whether this 14% to 19% increase in failure probability
is critical for satellite developers depends on the specific
project and requires careful risk estimation as well as engi-
neering judgment. If developers rule out stack canaries due
to this risk, there is a clear need for radiation-resistant stack
canary alternatives for space systems. However, suppose this
increase in failure probability is deemed acceptable. In that
case, as shown by our experiments, there is no fundamental
technical reason preventing wider adoption of stack canaries
in space systems.

7.2. Real-World Context

Deriving specific real-world crash rates from our results
is difficult and prone to misconceptions. For this reason,
our evaluation only attempts to show the difference to a
baseline. For example, in Section 6.4, we show that we
can observe a 14% increase in crashes related to stack
canaries when observing the total memory, i.e., both RAM
and text. Hence, we leave the real-world crash rate to future
research. Ultimately, precisely modeling real-world SEUs

involves elaborate radiation modeling, i.e., the Sun’s activity,
precise hardware models (for example, using FreePDK [8],
[50]), and more, which is beyond the scope of this paper. In
addition, previous research states that instruction memory is
technically read-only, allowing for elaborate error detection
and correction [11], [48], [64]. However, our survey of satel-
lite systems did not give us reason to assume a widespread
deployment of such measures.

Thus, in our research, we follow the approach of de-
pendable systems research that models bitflips in software
by stating failure probabilities and rates that assume a bitflip
occurs while leaving the actual probability for a bitflip to
a different research field. Other research investigates actual
bitflip probabilities depending on radiation and the incoming
particles, for example, by placing processor and memory in
particle accelerators [12], [24], [27], [57], [68].

7.3. Fault Reasons

During our overall impact study (cf. Section 6.4), we
studied the impact of single event errors on the program
outcomes. We divided the program outcomes into success
and failure cases, and we categorized outcomes based on
MMIO write desynchronization. An MMIO write desync
occurs if the fault-injected program’s MMIO write does not
match the reference trace, which has been created without
fault injection. We chose this metric, as MMIO writes are
used to communicate with external peripherals and devices,
and changes in MMIO writes are the strongest indicator if
the satellite’s OBC gives faulty instructions to other devices,
potentially leading to malfunction or lasting damage. After a
peripheral is given the wrong instructions, it is likely difficult
for operators to figure out the problem based solely on the
observation of its unexpected behavior. An alternative metric
to MMIO write desyncs could have been tracking software-
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only desyncs, e.g., different execution paths (that is, desyncs
of executed basic blocks). However, there is a (small) chance
these resolve themselves if the thread that is desynchronized
terminates or receives new inputs. We conservatively opted
to only track errors that result in consequences for the
hardware. However, this distinction between hardware and
software desynchronizations is ultimately not critical, as
can be seen in Figure 2: In most cases, either all or none
of the criteria desynchronize, and the relative share of the
outcomes seems to be the same across a satellite. Therefore,
changing the categorization of fault reasons from MMIO
writes to a software-based metric only changes the absolute
numbers. For example, if we include basic block desyncs,
the total number of faults rises slightly—but the share across
categories remains equal.

7.4. Academic Hardening Techniques

In recent years, academic research has presented a se-
ries of exploit mitigation techniques beyond the hardening
methods explored in this work [4], [42], [45], [63]. Initially,
we considered testing a series of academic hardening meth-
ods as well, which coincided well with recent work from
2024 by Tan et al. [69] that provides a systematization of
knowledge on the (academic) progress of exploit mitiga-
tions for ARM Cortex-A & Cortex-M. When investigating
the individual research papers discussing novel hardening
techniques, we noticed that the published prototypes are
scattered over many years of research. Consequently, their
prototype implementations—most in the form of LLVM
passes—target widely different versions of LLVM, partially
going as far back as LLVM 3.9 [21]. While this poses no
problem for research on exploit mitigations, it presents a
problem for our fault injection-based approach. Different
compiler versions require different plain flavor baselines for
a meaningful evaluation, making comparisons increasingly
complex. We considered porting proposed mitigations to the
current LLVM version but deemed this unfeasible.

Furthermore, many techniques do not inherently conflict
with radiation. For example, address space layout random-
ization (ASLR) and executable-only memory (XOM) do not
contain sensible values like stack canaries or function sani-
tization tags that are susceptible to radiation. For example,
ASLR is managed at an OS level; while not straightforward
for MMU-free RTOS systems, there are proposed solu-
tions [45], [63], but the actual binary is loaded at different
addresses without changes to the binary. Similarly, while
XOM is not natively supported by the ARM Cortex-M
memory protection unit, research has also come up with
solutions [42], [62].

7.5. Implications for Rad-Hardened Designs

Our RADSIM engine calculates the probability that a
target program fails given that a fault has occurred. In
other words, we compute the conditional probability of a
fault causing a failure. As far as we can tell, radiation-
hardened processors primarily reduce the likelihood of a

particle strike causing a fault in the first place. Therefore, the
failure mitigation provided by radiation-hardened hardware
operates at a different level than the one our work studies,
and our results also apply to radiation-hardened designs.
These techniques merely ensure that the likelihood of en-
countering a fault is significantly reduced; if a fault occur,
our observations hold likewise. The key difference lies in the
overall probability of failure due to a particle strike, which
is lower in radiation-hardened systems but follows the same
underlying mechanisms.

7.6. Limitations

While our prototype only works for ARM Cortex-M,
this is purely an engineering limitation stemming from the
underlying HOEDUR firmware fuzzer we used as founda-
tion [61]. Coincidentally, fuzzers have many of the same
requirements as our fault injection approach, such as pre-
cisely controlling and stopping execution, controlling in-
put and output, and achieving high execution throughput.
There is no conceptual limit to applying our approach to
ARM Cortex-A or AVR32, which would be according to
our hardware survey (cf. Section 2.1). Hence, while not
conceptually limited, the engineering effort to implement
new architectures, such as radiation-hardened architectures,
is considerable. Previous research on satellite security has
yielded a QEMU implementation for AVR32 [75], [76].

Another limitation of our prototype is that it does not
inject faults into registers. From a technical perspective, it
is trivial to also iterate through each register access and test
each single bitflip, as we did with instructions and memory
accesses. However, since each instruction works with at
least one register, i.e., 32 bits, this quickly increases the
computing effort by a huge margin. Further, register values
are extremely short-lived, often only for a few instructions.
In practice, this usually means that inducing a bitflip during
a memory load has the same outcome as a bitflip to the
respective register value in the subsequent instructions. Nev-
ertheless, there are approaches [10] to analyze the assembly
and reduce the fault injection to the bits that are actually
utilized, but they still rely on random sampling during the
evaluation.

8. Conclusion

This work explored the impact of radiation-induced
bitflips, specifically Single Event Errors (SEEs), on the
resilience of exploit mitigations in satellite firmware. In
the first step, we performed an extensive market survey
of 381 satellite designs and concluded that only 8.5% de-
ploy radiation-hardened processors. Subsequently, we in-
vestigated the impact of SEEs on the exploit hardening
technique by proposing a novel binary-agnostic and deter-
ministic approach for injecting bitflips, which exhaustively
tests every single bitflip option for both .text and memory
reads. We develop RADSIM and systematically evaluate the
radiation impact on stack canaries, control flow integrity,
and function sanitization using 21 billion bitflip experiments.
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Our findings reveal that all tested hardening techniques
increase the probability of a program malfunctioning. Ad-
ditionally, we showed that the increase in fault probability
for stack canaries exceeds the increase explained through
code size increase, showing that the canaries themselves
measurably increase a system fault probability in radiation-
heavy environments. However, for other defenses, such as
CFI, the primary factor for increased failure probability is
code size.
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Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper studies the impact of radiation-induced bit-
flips on the exploit mitigation techniques used by small
satellite firmware. It first analyzes 381 small satellite designs
to identify the prevalence of COTS hardware platforms.
Next, it presents RADSIM, a new bitflip injection system,
and demonstrates its use to evaluate two satellite firmware,
each compiled with four exploit mitigation strategies.

A.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Establishes a New Research Direction
• Provides a Valuable Step Forward in an Established

Field
• Other

A.3. Reasons for Acceptance

1) This paper identifies a key gap in security research
on small satellite systems, which didn’t explore the
impact of space-specific factors on the deployment
of traditional mitigation strategies.

2) The paper presents a systematic survey of small
satellites that identifies a critical new finding: only
8.5% of the systems use radiation-hardened proces-
sors.

3) This paper examines cosmic radiation’s impact on
small satellite firmware that uses traditional exploit
mitigation techniques with a newly developed tool
for fault injection; the tool will be open-sourced to
enable further research.

A.4. Noteworthy Concerns

1) Limitations of the paper’s study/evaluation in:
(1) the number (381) of satellite systems chosen,
(2) the number of tested satellite firmware (two) and
hardening techniques (four) [focused on software-
based but not hardware-based], and (3) the number
of test cases selected (75 test cases for ORESAT and
35 for ACUBESAT) to proceed with a comparison
between plain and hardened code.
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