

SoK: Prudent Evaluation Practices for Fuzzing

Moritz Schloegel, Nils Bars, Nico Schiller, Lukas Bernhard, Tobias Scharnowski, Addison Crump, Arash Ale Ebrahim, Nicolai Bissantz, Marius Muench, and Thorsten Holz

> CISPA Helmholtz Center for Information Security Ruhr University Bochum University of Birmingham

Fuzzing Papers are Still Popular

Are we evaluating fuzzers right?

SoK: Prudent Evaluation Practices for Fuzzing

Moritz Schloegel¹, Nils Bars¹, Nico Schiller¹, Lukas Bernhard¹, Tobias Scharnowski¹ Addison Crump¹, Arash Ale-Ebrahim¹, Nicolai Bissantz², Marius Muench³, Thorsten Holz¹

¹CISPA Helmholtz Center for Information Security, {first.lastname}@cispa.de

²Ruhr University Bochum, nicolai.bissantz@ruhr-uni-bochum.de

³University of Birmingham, m.muench@bham.ac.uk

Abstract—Fuzzing has proven to be a highly effective approach to uncover software bugs over the past decade, After AFL popularized the groundbreaking concept of lightweight coverage

1. Introduction

Fuzzing, a portmanteau of "fuzz testing", has gained

Goals

Study reproducibility

Goals

Study reproducibility

... and other evaluation pitfalls

1. Find all fuzzing papers on 7 top-tier venues between 2018 and 2023

1. Find all fuzzing papers on 7 top-tier venues between 2018 and 2023

- 1. Find all fuzzing papers on 7 top-tier venues between 2018 and 2023
- 2. Literature analysis of 150 of these papers

- 1. Find all fuzzing papers on 7 top-tier venues between 2018 and 2023
- 2. Literature analysis of 150 of these papers
- 3. Case studies: Reproducing experiments of 8 papers

- 1. Find all fuzzing papers on 7 top-tier venues between 2018 and 2023
- 2. Literature analysis of 150 of these papers
- 3. Case studies: Reproducing experiments of 8 papers
- 4. Update recommendations (where needed)

How to make sure fuzzing is reproducible?

Klees et al. – "Evaluating Fuzz Testing", ACM CCS, 2018

Metzmann et al. – "FuzzBench: An Open Fuzzer Benchmarking Platform and Service", ESEC/FSE, 2021

Böhme et al. – On the Reliability of Coverage Testing, ICSE, 2022

How to make sure fuzzing is reproducible?

Klees et al. – "Evaluating Fuzz Testing", ACM CCS, 2018

Metzmann et al. – "FuzzBench: An Open Fuzzer Benchmarking Platform and Service", ESEC/FSE, 2021

Böhme et al. – On the Reliability of Coverage Testing, ICSE, 2022

Disclaimer

No intention of finger pointing!

- Document setup and parameters
- Sample relevant targets
- Pick a good baseline
- Choose suitable evaluation metrics
 Code coverage
 Bugs
- **5** Conduct a statistical evaluation

- Document setup and parameters
- Sample relevant targets
- Pick a good baseline
- 4 Choose suitable evaluation metrics
 - · Code coverage
 - · Bugs
- **6** Conduct a statistical evaluation

- Document setup and parameters
- Sample relevant targets
- Pick a good baseline
- 4 Choose suitable evaluation metrics
 - · Code coverage
 - · Bugs
- **5** Conduct a statistical evaluation

Benchmarks

- Document setup and parameters
- 2 Sample relevant targets
- Pick a good baseline
- 4 Choose suitable evaluation metrics
 - · Code coverage
 - · Bugs
- **5** Conduct a statistical evaluation

A new fuzzer that proposes to:

1. Dynamically adapt probabilities with which mutations are chosen

2. Use an *evolutionary strategy* to optimize these probabilities

Lesson learned: ablation studies are important

- Document setup and parameters
- 2 Sample relevant targets
- Pick a good baseline
- 4 Choose suitable evaluation metrics
 - · Code coverage
 - · Bugs
- **5** Conduct a statistical evaluation

New fuzzer:

Improves input scheduling

Aims to covers more paths with fewer inputs

Lesson learned: new metrics may mislead readers

⇒ include known metrics!

- Document setup and parameters
- 2 Sample relevant targets
- Pick a good baseline
- 4 Choose suitable evaluation metrics
 - · Code coverage
 - · Bugs
- **5** Conduct a statistical evaluation

A new fuzzer that:

Proposes memory usage as additional feedback

Uses unique crashes as a metric

Unique Crashes

... after one patch

1+?

...after manual deduplication

...after manual deduplication

Suitable Metrics: Unique Crashes

Lesson learned: "unique" crashes \neq actual bugs

 \Rightarrow need deduplication or should use actual bugs

- Document setup and parameters
- 2 Sample relevant targets
- Pick a good baseline
- 4 Choose suitable evaluation metrics
 - · Code coverage
 - Bugs
- Conduct a statistical evaluation

• Statistically evaluate results

5 Statistically evaluate results

There's more beyond the evaluation itself:

· What about the fuzzer source code?

· What about new bugs found during the evaluation?

Beyond the paper: artifact availability

Good: much code is openly available!

BUT: low artifact evaluation participation

There's more beyond the evaluation itself:

· What about the fuzzer source code?

· What about new bugs found during the evaluation?

What happens to found bugs?

What happens to found bugs?

⇒ Responsible disclosure?

Approach

• Look for CVEs in fuzzing papers

2 Check their outcome

Why?

Misaligned incentives

Why?

Misaligned incentives & no verification

Why?

Misaligned incentives & no verification

 \Rightarrow Easy to game the system

- Document setup and parameters
- Sample relevant targets
- Pick a good baseline
- **4** Choose suitable evaluation metrics
 - Code coverage
 - Bugs
- **5** Conduct a statistical evaluation
- + Artifact availability
- + CVE misuse

Guidelines on GitHub

☐ README

Fuzzing Evaluation Guidelines

Current version: 1.0.3

Proposals for changes welcome (please open an issue for discussion or a pull request for changes).

DISCLAIMER: These items represent are a best-effort attempt at capturing action items to follow during the evaluation of a scientific paper that focuses on fuzzing. They do not apply universally to all fuzzing methods - in certain scenarios, techniques may wish to deviate for good reason from these guidelines. In any case, a case-by-case judgment is necessary. The guidelines do not discuss many malicious choices that immediately negate any chance of a fair evaluation, such as giving your fuzzer an unfair advantage (e.g., by fine-tuning the fuzzer or its targets) or putting other fuzzers at a disadvantage.

A. Preparation for Evaluation

- 1. Find relevant tools and baselines to compare against
 - o 1.1 Include state-of-the-art techniques from both academia and industry
 - 1.2 If your fuzzer is based on an existing fuzzer, include the baseline (to measure the delta of your changes, which allows attributing improvements to your technique)
 - 1.3 Use recent versions of fuzzers
 - 1.4 If applicable, derive a baseline variant of your technique that replaces core contributions by alternatives.
 For example, consider using a variant that replaces an informed algorithm with randomness.

Summary

1 Fuzzing evaluations are hard to get right

Paper

② Join artifact evaluation

3 Help us shape the guidelines

Guidelines