Egl UNIVERSITYOF v,
#y BIRMINGHAM D

RUHR
UNIVERSITAT
BOCHUM

CISPA

-
%>

SoK: Prudent Evaluation Practices for Fuzzing

Moritz Schloegel, Nils Bars, Nico Schiller, Lukas Bernhard, Tobias Scharnowski, Addison Crump, Arash
Ale Ebrahim, Nicolai Bissantz, Marius Muench, and Thorsten Holz

CISPA Helmholtz Center for Information Security
Ruhr University Bochum o
University of Birmingham

Fuzzing Papers are Still Popular

801 — security
n Software Engineering
Q
©
a
on
c
N
N
>
L
T+

O T T T T T T
2018 2019 2020 2021 2022 2023

2/27

Are we evaluating fuzzers right?

SoK: Prudent Evaluation Practices for Fuzzing

Moritz Schloegel®, Nils Bars', Nico Schiller!, Lukas Bernhard®, Tobias Scharnowski!
Addison Crumpl, Arash Ale-Ebrahim', Nicolai Bissantz?, Marius Muench®, Thorsten Holz!

LCISPA Helmholiz Center for Information Security, {first.lasmame]@cispa.de
2Ruhr University Bochum, nicolai.bissantz@ ruhr-uni-bochum.de
3University of Birmingham, m.muench@bham.ac.uk

Abstract—Fuzzing has proven to be a highly effective approach 1. Introduction
to uncover software bugs over the past decade. After AFL pop-
ularized the groundbreaking concept of lightweight coverage Fuzzing, a portmanteau of “fuzz testing”, has gained

Study reproducibility

4127

Study reproducibility

... and other evaluation pitfalls

4127

1. Find all fuzzing papers on 7 top-tier venues between 2018 and 2023

5/27

1. Find all fuzzing papers on 7 top-tier venues between 2018 and 2023

5/27

1. Find all fuzzing papers on 7 top-tier venues between 2018 and 2023

2. Literature analysis of 150 of these papers

il

I

IIIIII[

il

il

IIIIII[

il

I

5/27

1. Find all fuzzing papers on 7 top-tier venues between 2018 and 2023
2. Literature analysis of 150 of these papers

3. Case studies: Reproducing experiments of 8 papers

il

I

il

il

il

I

5/27

1. Find all fuzzing papers on 7 top-tier venues between 2018 and 2023
2. Literature analysis of 150 of these papers
3. Case studies: Reproducing experiments of 8 papers

4. Update recommendations (where needed)

il

I

il

il

il

I

5/27

How to make sure fuzzing is reproducible?

Klees et al. — “Evaluating Fuzz Testing”, ACM CCS, 2018

Metzmann et al. - “FuzzBench: An Open Fuzzer Benchmarking Platform and Service”,
ESEC/FSE, 2021

Bohme et al. — On the Reliability of Coverage Testing, ICSE, 2022

6/27

How to make sure fuzzing is reproducible?

Klees et al. - “Evaluating Fuzz Testing”, ACM CCS, 2018

6/27

Disclaimer

No intention of finger pointing!

7127

Recommendations

©® Document setup and parameters
® Sample relevant targets
® Pick a good baseline

O Choose suitable evaluation metrics

Code coverage
Bugs

® Conduct a statistical evaluation

8/27

Recommendations

© Document setup and parameters

=

8/27

Recommendations

® Sample relevant targets

8/27

Times Used

257 24
Outdated I Good None 27
201 18
16
15 1
12 12
10 1 9
7
5
5 1 3 4 3 4 3 4
, 0 b i i
0 .
2018 2019 2020 2021 2022 2023

9/27

Recommendations

® Pick a good baseline

10/27

® Pick a Good Baseline

A new fuzzer that proposes to:

1. Dynamically adapt probabilities with which mutations are chosen

2. Use an evolutionary strategy to optimize these probabilities

1/27

® Pick a Good Baseline

bloaty_fuzz_target

6000 /f‘___._ﬁ_ — an
50004 [
Q
o
©
o 40001
>
8
= 300071
o
G
5 2000
10001 4— AFL
New Fuzzer
O T T T T T T T
0 4 8 12 16 20 24

Time [hours]

1/27

® Pick a Good Baseline

bloaty_fuzz_target

60004 __._q.._-:o—-‘-o-——o-—_-o-—_-o——o—-
W- A
50001 [
[J]
o) |
© |
o 4000 |
>
S |
= 30009 |
o
c |
o 11
m 0 : A— AFL
10001 : New Fuzzer
| @ - Ablation
v ! T U T T T T
0 4 8 12 16 20 24

Time [hours]

1/27

® Pick a Good Baseline

bloaty_fuzz_target

A Gupeeme i =—e|——
60001 PP e saraasra e
-
o 50001 [
& | 6400
© |
g 40001 | L.
Gl | 6200
(&)
= 30009 |
o
c | I
£ 20004 | 6000
@ | AFL
4 1 T T New Fuzzer
10004 | 23 2% ew ruzze
| @ - Ablation
O ! T T T T T T
0 4 8 12 16 20 24

Time [hours]

1/27

® Pick a Good Baseline

Lesson learned: ablation studies are important

1/27

Recommendations

® Choose suitable evaluation metrics
- Code coverage

12/27

O Suitable Metrics: Code Coverage

New fuzzer:

- Improves input scheduling

- Aims to covers more paths with fewer inputs

13/27

O Suitable Metrics: Code Coverage

New Fuzzer --- AFL

nm
9000+

80001
7000+
60001
50001
40001 -
3000 /
20004/,

1000

#Total Paths

0 1 2 3 4 5 6 7 8
#Total Executions (x107)

13/27

O Suitable Metrics: Code Coverage

#Total Paths

9000+
8000
7000+
6000
5000+
4000+
3000+
2000+

10004

New Fuzzer --- AFL

nm

0
0

1 2 3 4 5 6 7 8
#Total Executions (x107)

Branch Coverage

10000

9000

8000

7000

6000,

5000

4000

8 12 16 20 24
Time [hours]

13/27

O Suitable Metrics: Code Coverage

Lesson learned: new metrics may mislead readers

= include known metrics!

13/27

Recommendations

® Choose suitable evaluation metrics

- Bugs

14/27

O Suitable Metrics: Unique Crashes

A new fuzzer that:

- Proposes memory usage as additional feedback

- Uses unique crashes as a metric

15/27

O Suitable Metrics: Unique Crashes

Unique Crashes

1717

New Fuzzer
15001 AR

1000 1

464

N -
0

#Unique Crashes

15/27

O Suitable Metrics: Unique Crashes

Unique Crashes

1717
New Fuzzer

g U AR
<
(%]
©
O 1000 1
[}
)
g
S 5001 464
) -

0

New Fuzzer AFL

Bug count: ? ?

15/27

O Suitable Metrics: Unique Crashes

Unique Crashes ... after one patch
1717 New Fuzzer
New Fuzzer 1500 E AFL
g U . ARL 3
< [%]
g S 1000
S 1000 1 Y
(] =)
c g
o— =
§ 500 1 464 7 2007
- 14 9
0 0

15/27

O Suitable Metrics: Unique Crashes

Unique Crashes ... after one patch
1717 New Fuzzer
New Fuzzer 1500 E AFL
g U . ARL 3
< [%]
g S 1000
S 1000 1 Y
(] =)
c g
o— =
§ 500 1 464 7 2007
- 14 9
0 0

New Fuzzer AFL

Bug count: 1+? 1+7?

15/27

O Suitable Metrics: Unique Crashes

Unique Crashes ..after manual deduplication
1717 New Fuzzer
New Fuzzer 1500 E AFL
g U . ARL §
.’% [%]
5 S 1000
S 1000 1 Y
(] =)
c g
i =
. ﬁ -
0 0 2 2

15/27

O Suitable Metrics: Unique Crashes

Unique Crashes ..after manual deduplication
1717 New Fuzzer
New Fuzzer 1500 E AFL
g U . ARL §
.’% [%]
5 S 1000
S 1000 1 Y
(] =)
c g
i =
. ﬁ -
0 0 2 2

New Fuzzer AFL

Bug count: 2 2

15/27

O Suitable Metrics: Unique Crashes

Lesson learned: “unique” crashes # actual bugs

= need deduplication or should use actual bugs

15/27

Recommendations

® Conduct a statistical evaluation

16/27

@ Statistically evaluate results

1 3 4 5 6 8 10 12 15 16 20 24 30 40
Repetitions

17127

@ Statistically evaluate results

150 1 150 1
None 132 None
EEE Mann-Whitney U . A,
w 1001 94 B Unknown »n 100 | Other
& @
= 3
a 55 a
=® 50 = 50 -
15 3
O i 1 0 _4L_

Significance Test Effect Size Test

17/27

Recommendations

There's more beyond the evaluation itself:

- What about the fuzzer source code?

- What about new bugs found during the evaluation?

18/27

Artifact Availability

Beyond the paper: artifact availability

19/27

Artifact Availability

300 7

I Available
Unavailable

9 200
(8]
&
=
<
100 A 75

0 m

Source Code

19/27

Artifact Availability

300 1
300 1 - BN Has badge
I Available .
. No participation
Unavailable
9 200 N No access
9 200 (8]
S 2
£ 5 107 103
<
E * 1001
100 A 75 66
0- . .
0- Artifact Evaluation

Source Code

19/27

Artifact Availability

Good: much code is openly available!

BUT: low artifact evaluation participation

19/27

Recommendations

There’'s more beyond the evaluation itself:

- What about new bugs found during the evaluation?

20/27

What happens to found bugs?

21/27

What happens to found bugs?

= Responsible disclosure?

21/27

@ Look for CVEs in fuzzing papers

® Check their outcome

22/27

145 Acknowledged

- o

— 2 Unfixed

_ 88 No public disclosure

55 Unknown reason

88 Reserved

69 Ignored

338 Assigned |

- ™ 14 Project inactive
36 Invalid

1 18 Not a bug

1 18 Duplicate
23/27

Misaligned incentives

2427

Misaligned incentives & no verification

2427

Misaligned incentives & no verification

= Easy to game the system

2427

Recommendations

@ Document setup and parameters \
® Sample relevant targets
® Pick a good baseline

O Choose suitable evaluation metrics

- Code coverage > = guide“nes
* Bugs

® Conduct a statistical evaluation

+ Artifact availability

+ CVE misuse J

25/27

Guidelines on GitHub

[README

Fuzzing Evaluation Guidelines

Current version: 1.0.3
Proposals for changes welcome (please open an issue for discussion or a pull request for changes).

DISCLAIMER: These items represent are a best-effort attempt at capturing action items to follow during the
evaluation of a scientific paper that focuses on fuzzing. They do not apply universally to all fuzzing methods - in
certain scenarios, techniques may wish to deviate for good reason from these guidelines. In any case, a case-by-
case judgment is necessary. The guidelines do not discuss many malicious choices that immediately negate any
chance of a fair evaluation, such as giving your fuzzer an unfair advantage (e.g., by fine-tuning the fuzzer or its
targets) or putting other fuzzers at a disadvantage.

A. Preparation for Evaluation
1. Find relevant tools and baselines to compare against

> 1.1 Include state-of-the-art techniques from both academia and industry

o 1.2 If your fuzzer is based on an existing fuzzer, include the baseline (to measure the delta of your changes,
which allows attributing improvements to your technique)

© 1.3 Use recent versions of fuzzers

> 1.4 If applicable, derive a baseline variant of your technique that replaces core contributions by alternatives. 26/27
For example, consider using a variant that replaces an informed algorithm with randomness.

@ Fuzzing evaluations are hard to get right

@ Join artifact evaluation

@ Help us shape the guidelines

Guidelines

27127

