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Fuzzing Papers are Still Popular
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Are we evaluating fuzzers right?
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Abstract—Fuzzing has proven to be a highly effective approach 1. Introduction
to uncover software bugs over the past decade. After AFL pop-
ularized the groundbreaking concept of lightweight coverage Fuzzing, a portmanteau of “fuzz testing”, has gained




Study reproducibility

4127



Study reproducibility

... and other evaluation pitfalls
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1. Find all fuzzing papers on 7 top-tier venues between 2018 and 2023
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1. Find all fuzzing papers on 7 top-tier venues between 2018 and 2023

2. Literature analysis of 150 of these papers
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1. Find all fuzzing papers on 7 top-tier venues between 2018 and 2023
2. Literature analysis of 150 of these papers

3. Case studies: Reproducing experiments of 8 papers
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1. Find all fuzzing papers on 7 top-tier venues between 2018 and 2023
2. Literature analysis of 150 of these papers
3. Case studies: Reproducing experiments of 8 papers

4. Update recommendations (where needed)
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How to make sure fuzzing is reproducible?

Klees et al. — “Evaluating Fuzz Testing”, ACM CCS, 2018

Metzmann et al. - “FuzzBench: An Open Fuzzer Benchmarking Platform and Service”,
ESEC/FSE, 2021

Bohme et al. — On the Reliability of Coverage Testing, ICSE, 2022
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How to make sure fuzzing is reproducible?

Klees et al. - “Evaluating Fuzz Testing”, ACM CCS, 2018
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Disclaimer

No intention of finger pointing!
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Recommendations

©® Document setup and parameters
® Sample relevant targets
® Pick a good baseline

O Choose suitable evaluation metrics

Code coverage
Bugs

® Conduct a statistical evaluation
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Recommendations

© Document setup and parameters
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Recommendations

® Sample relevant targets
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Recommendations

® Pick a good baseline
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® Pick a Good Baseline

A new fuzzer that proposes to:

1. Dynamically adapt probabilities with which mutations are chosen

2. Use an evolutionary strategy to optimize these probabilities
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® Pick a Good Baseline
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® Pick a Good Baseline

bloaty_fuzz_target
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® Pick a Good Baseline

bloaty_fuzz_target
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® Pick a Good Baseline

Lesson learned: ablation studies are important
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Recommendations

® Choose suitable evaluation metrics
- Code coverage
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O Suitable Metrics: Code Coverage

New fuzzer:

- Improves input scheduling

- Aims to covers more paths with fewer inputs
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O Suitable Metrics: Code Coverage

New Fuzzer --- AFL

nm
9000+

80001
7000+
60001
50001
40001 -
3000 /
20004/,

1000

#Total Paths

0 1 2 3 4 5 6 7 8
#Total Executions (x107)

13/27



O Suitable Metrics: Code Coverage
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O Suitable Metrics: Code Coverage

Lesson learned: new metrics may mislead readers

= include known metrics!
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Recommendations

® Choose suitable evaluation metrics

- Bugs
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O Suitable Metrics: Unique Crashes

A new fuzzer that:

- Proposes memory usage as additional feedback

- Uses unique crashes as a metric
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O Suitable Metrics: Unique Crashes

Unique Crashes
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O Suitable Metrics: Unique Crashes
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O Suitable Metrics: Unique Crashes

Unique Crashes ... after one patch
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O Suitable Metrics: Unique Crashes

Unique Crashes ... after one patch
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O Suitable Metrics: Unique Crashes

Unique Crashes ..after manual deduplication
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O Suitable Metrics: Unique Crashes

Unique Crashes ..after manual deduplication
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O Suitable Metrics: Unique Crashes

Lesson learned: “unique” crashes # actual bugs

= need deduplication or should use actual bugs
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Recommendations

® Conduct a statistical evaluation
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@ Statistically evaluate results
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@ Statistically evaluate results
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Recommendations

There's more beyond the evaluation itself:

- What about the fuzzer source code?

- What about new bugs found during the evaluation?
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Artifact Availability

Beyond the paper: artifact availability
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Artifact Availability
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Artifact Availability
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Artifact Availability

Good: much code is openly available!

BUT: low artifact evaluation participation
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Recommendations

There’'s more beyond the evaluation itself:

- What about new bugs found during the evaluation?
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What happens to found bugs?
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What happens to found bugs?

= Responsible disclosure?
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@ Look for CVEs in fuzzing papers

® Check their outcome
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Misaligned incentives
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Misaligned incentives & no verification
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Misaligned incentives & no verification

= Easy to game the system
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Recommendations

@ Document setup and parameters \
® Sample relevant targets
® Pick a good baseline

O Choose suitable evaluation metrics

- Code coverage > = guide“nes
* Bugs

® Conduct a statistical evaluation

+ Artifact availability

+ CVE misuse J
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Guidelines on GitHub

[ README

Fuzzing Evaluation Guidelines

Current version: 1.0.3
Proposals for changes welcome (please open an issue for discussion or a pull request for changes).

DISCLAIMER: These items represent are a best-effort attempt at capturing action items to follow during the
evaluation of a scientific paper that focuses on fuzzing. They do not apply universally to all fuzzing methods - in
certain scenarios, techniques may wish to deviate for good reason from these guidelines. In any case, a case-by-
case judgment is necessary. The guidelines do not discuss many malicious choices that immediately negate any
chance of a fair evaluation, such as giving your fuzzer an unfair advantage (e.g., by fine-tuning the fuzzer or its
targets) or putting other fuzzers at a disadvantage.

A. Preparation for Evaluation
1. Find relevant tools and baselines to compare against

> 1.1 Include state-of-the-art techniques from both academia and industry

o 1.2 If your fuzzer is based on an existing fuzzer, include the baseline (to measure the delta of your changes,
which allows attributing improvements to your technique)

© 1.3 Use recent versions of fuzzers

> 1.4 If applicable, derive a baseline variant of your technique that replaces core contributions by alternatives. 26/27
For example, consider using a variant that replaces an informed algorithm with randomness.



@ Fuzzing evaluations are hard to get right

@ Join artifact evaluation

@ Help us shape the guidelines

Guidelines
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